Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capsules Encapsulated

19.05.2009
Enzyme-equipped liposomes embedded in polymer capsules as a novel biomedical transport system

When cells cannot carry out the tasks required of them by our bodies, the result is disease.

Nanobiotechnology researchers are looking for ways to allow synthetic systems take over simple cellular activities when they are absent from the cell. This requires transport systems that can encapsulate medications and other substances and release them in a controlled fashion at the right moment. The transporter must be able to interact with the surroundings in order to receive the signal to unload its cargo.

A team led by Frank Caruso at the University of Melbourne has now developed a microcontainer that can hold thousands of individual “carrier units”—a “capsosome”. As they report in the journal Angewandte Chemie, these are polymer capsules in which liposomes have been embedded to form subcompartments.

Currently, the primary type of nanotransporter used for drugs is the capsule: Polymer capsules form stable containers that are semipermeable, which allows for communication with the surrounding medium. However, these are not suitable for the transport of small molecules because they can escape. Liposomes are good at protecting small drug molecules; however, they are often unstable and impermeable to substances from the environment. The Australian researchers have now combined the advantages of both systems in their capsosomes.

Capsosomes are produced by several steps. First, a layer of polymer is deposited onto small silica spheres. This polymer contains building blocks modified with cholesterol. Liposomes that have been loaded with an enzyme can be securely anchored to the cholesterol units and thus attached to the polymer film. Subsequently, more polymer layers are added and then cross-linked by disulfide bridges into a gel by means of a specially developed, very gentle cross-linking reaction. In the final step, the silica core is etched away without damaging the sensitive cargo.

Experiments with an enzyme as model cargo demonstrated that the liposomes remain intact and the cargo does not escape. Addition of a detergent releases the enzyme in a functional state. By means of the enzymatic reaction, which causes a color change of the solution, it was possible to determine the number of liposome compartments to be about 8000 per polymer capsule.

“Because the capsosomes are biodegradable and nontoxic”, says Brigitte Staedler, a senior researcher in the group, “they would also be suitable for use as resorbable synthetic cell organelles and for the transport of drugs.” In addition, the scientists are planning to encapsulate liposomes filled with different enzymes together and to equip them with specific “receivers” which would allow the individual cargo to be released in a targeted fashion. This would make it possible to use enzymatic reaction cascades for catalytic reaction processes.

Author: Frank Caruso, University of Melbourne (Australia), http://www.chemeng.unimelb.edu.au/people/staff/caruso.html

Title: A Microreactor with Thousands of Subcompartments: Enzyme-Loaded Liposomes within Polymer Capsules

Angewandte Chemie International Edition 2009, 48, No. 24, 4359–4362, doi: 10.1002/anie.200900386

Frank Caruso | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemeng.unimelb.edu.au/people/staff/caruso.html

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>