Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Capsules Encapsulated

Enzyme-equipped liposomes embedded in polymer capsules as a novel biomedical transport system

When cells cannot carry out the tasks required of them by our bodies, the result is disease.

Nanobiotechnology researchers are looking for ways to allow synthetic systems take over simple cellular activities when they are absent from the cell. This requires transport systems that can encapsulate medications and other substances and release them in a controlled fashion at the right moment. The transporter must be able to interact with the surroundings in order to receive the signal to unload its cargo.

A team led by Frank Caruso at the University of Melbourne has now developed a microcontainer that can hold thousands of individual “carrier units”—a “capsosome”. As they report in the journal Angewandte Chemie, these are polymer capsules in which liposomes have been embedded to form subcompartments.

Currently, the primary type of nanotransporter used for drugs is the capsule: Polymer capsules form stable containers that are semipermeable, which allows for communication with the surrounding medium. However, these are not suitable for the transport of small molecules because they can escape. Liposomes are good at protecting small drug molecules; however, they are often unstable and impermeable to substances from the environment. The Australian researchers have now combined the advantages of both systems in their capsosomes.

Capsosomes are produced by several steps. First, a layer of polymer is deposited onto small silica spheres. This polymer contains building blocks modified with cholesterol. Liposomes that have been loaded with an enzyme can be securely anchored to the cholesterol units and thus attached to the polymer film. Subsequently, more polymer layers are added and then cross-linked by disulfide bridges into a gel by means of a specially developed, very gentle cross-linking reaction. In the final step, the silica core is etched away without damaging the sensitive cargo.

Experiments with an enzyme as model cargo demonstrated that the liposomes remain intact and the cargo does not escape. Addition of a detergent releases the enzyme in a functional state. By means of the enzymatic reaction, which causes a color change of the solution, it was possible to determine the number of liposome compartments to be about 8000 per polymer capsule.

“Because the capsosomes are biodegradable and nontoxic”, says Brigitte Staedler, a senior researcher in the group, “they would also be suitable for use as resorbable synthetic cell organelles and for the transport of drugs.” In addition, the scientists are planning to encapsulate liposomes filled with different enzymes together and to equip them with specific “receivers” which would allow the individual cargo to be released in a targeted fashion. This would make it possible to use enzymatic reaction cascades for catalytic reaction processes.

Author: Frank Caruso, University of Melbourne (Australia),

Title: A Microreactor with Thousands of Subcompartments: Enzyme-Loaded Liposomes within Polymer Capsules

Angewandte Chemie International Edition 2009, 48, No. 24, 4359–4362, doi: 10.1002/anie.200900386

Frank Caruso | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>