Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canola genome sequence reveals evolutionary ‘love triangle’

22.08.2014

An international team of scientists including researchers from the University of Georgia recently published the genome of Brassica napus-commonly known as canola-in the journal Science. Their discovery paves the way for improved versions of the plant, which is used widely in farming and industry.

Canola is grown across much of Canada and its native Europe, but the winter crop is increasingly cultivated in Georgia. Canola oil used for cooking is prized for its naturally low levels of saturated fat and rich supply of omega-3 fatty acids, but the plant is also used to produce feed for farm animals and as an efficient source for biodiesel.


UGA Regents Professor Andrew Paterson heads the university's Plant Genome Mapping Laboratory.

"This genome sequence opens new doors to accelerating the improvement of canola," said Andrew Paterson, Regents Professor, director of UGA's Plant Genome Mapping Laboratory and co-corresponding author for the study. "We can use this knowledge to tailor the plant's flowering time, make it more resistant to disease and improve a myriad of other traits that will make it more profitable for production in Georgia and across the country."

Canola has one of the most complex genomes among flowering plants, forming thousands of years ago during the Neolithic Era when two plant species-Brassica rapa and Brassica oleracea-combined in the wild. Plants in the B. rapa family include turnips and cabbages, while B. oleracea encompasses cauliflower, cabbage, collards, broccoli, kale and other common vegetables.

The Plant Genome Mapping Laboratory played prominent roles in the sequencing both B. rapa and B. oleracea in 2011 and 2014, respectively.

"Understanding the genomes of B. rapa and B. oleracea was key to piecing together the canola genome," Paterson said. "It's like a genetic love triangle between the three species, with canola sometimes favoring genes from B. rapa or B. oleracea or sometimes both."

While much the world's canola is used to make cooking oil and protein-rich animal feed, it is also used in the production of lipstick, lip gloss, soap, lotion, printing ink and de-icing agents.

The growing interest in carbon reduction and more environmentally friendly fuel alternatives is also good news for canola growers, as this genome sequence may ultimately help researchers develop feedstocks that are suited to more sustainable biofuel production.

Global canola production has grown rapidly over the past 40 years, rising from the sixth largest oil crop to the second largest, according to the U.S. Department of Agriculture.

Much of the production in America is concentrated along the northern plains, but the recent construction of a canola processing plant near the South Carolina-Georgia border has spurred interest for growers in the Southeast.

Additional UGA researchers for the project include Xiyin Wang, assistant research scientist and co-first author for the paper; Tae-ho Lee and Yupeng Wang, former postdoctoral researchers; and current and former graduate students Hui Guo, Huizhe Jin, Jingping Li, Xu Tan, Haibao Tang, and Yupeng Wang.

Andrew Paterson | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/canola-genome-sequence/

Further reports about: Genome Laboratory Mapping Plants canola collards construction crop levels species triangle

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>