Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canola genome sequence reveals evolutionary ‘love triangle’

22.08.2014

An international team of scientists including researchers from the University of Georgia recently published the genome of Brassica napus-commonly known as canola-in the journal Science. Their discovery paves the way for improved versions of the plant, which is used widely in farming and industry.

Canola is grown across much of Canada and its native Europe, but the winter crop is increasingly cultivated in Georgia. Canola oil used for cooking is prized for its naturally low levels of saturated fat and rich supply of omega-3 fatty acids, but the plant is also used to produce feed for farm animals and as an efficient source for biodiesel.


UGA Regents Professor Andrew Paterson heads the university's Plant Genome Mapping Laboratory.

"This genome sequence opens new doors to accelerating the improvement of canola," said Andrew Paterson, Regents Professor, director of UGA's Plant Genome Mapping Laboratory and co-corresponding author for the study. "We can use this knowledge to tailor the plant's flowering time, make it more resistant to disease and improve a myriad of other traits that will make it more profitable for production in Georgia and across the country."

Canola has one of the most complex genomes among flowering plants, forming thousands of years ago during the Neolithic Era when two plant species-Brassica rapa and Brassica oleracea-combined in the wild. Plants in the B. rapa family include turnips and cabbages, while B. oleracea encompasses cauliflower, cabbage, collards, broccoli, kale and other common vegetables.

The Plant Genome Mapping Laboratory played prominent roles in the sequencing both B. rapa and B. oleracea in 2011 and 2014, respectively.

"Understanding the genomes of B. rapa and B. oleracea was key to piecing together the canola genome," Paterson said. "It's like a genetic love triangle between the three species, with canola sometimes favoring genes from B. rapa or B. oleracea or sometimes both."

While much the world's canola is used to make cooking oil and protein-rich animal feed, it is also used in the production of lipstick, lip gloss, soap, lotion, printing ink and de-icing agents.

The growing interest in carbon reduction and more environmentally friendly fuel alternatives is also good news for canola growers, as this genome sequence may ultimately help researchers develop feedstocks that are suited to more sustainable biofuel production.

Global canola production has grown rapidly over the past 40 years, rising from the sixth largest oil crop to the second largest, according to the U.S. Department of Agriculture.

Much of the production in America is concentrated along the northern plains, but the recent construction of a canola processing plant near the South Carolina-Georgia border has spurred interest for growers in the Southeast.

Additional UGA researchers for the project include Xiyin Wang, assistant research scientist and co-first author for the paper; Tae-ho Lee and Yupeng Wang, former postdoctoral researchers; and current and former graduate students Hui Guo, Huizhe Jin, Jingping Li, Xu Tan, Haibao Tang, and Yupeng Wang.

Andrew Paterson | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/canola-genome-sequence/

Further reports about: Genome Laboratory Mapping Plants canola collards construction crop levels species triangle

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>