Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cannibalistic Cells May Help Prevent Infections

05.08.2009
Infectious-disease specialists at UT Southwestern Medical Center have demonstrated that a cannibalistic process in cells plays a key role in limiting Salmonella infection.
Salmonella, the causative agent of salmonellosis, causes many of the intestinal infections and food-related illnesses reported in the U.S. About 600 people die each year as a result of these infections, accounting for roughly 30 percent of all reported food-related deaths. It is particularly dangerous among the elderly.

The new findings, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, are among the first to demonstrate that a process called autophagy (pronounced “aw-TAH-fah-gee”) prevents harmful bacteria such as Salmonella from becoming successful pathogens. The findings also suggest that decreases in autophagy – such as those that occur in the elderly and in certain patients with Crohn’s disease, an inflammatory bowel disorder – may lead to abnormalities in the way the intestinal tract deals with bacterial infections.

“It’s known that as you get older you become more susceptible to infectious diseases and also that autophagy decreases,” said Dr. Beth Levine, chief of the division of infectious diseases at UT Southwestern and senior author of the new study in PNAS. “In this paper, we’ve shown that signaling pathways that extend life and protect against bacterial invaders do so by triggering autophagy. This suggests that therapeutic strategies to increase autophagy may be effective in defeating harmful bacteria that can enter inside cells.”

Dr. Beth Levine -- www.utsouthwestern.edu/findfac/professional/0,2356,66821,00.html

Autophagy is the way cells devour their own unwanted or damaged parts. It is a highly regulated and completely normal process by which cells remain healthy by performing “routine housekeeping” and “garbage disposal.” Prior research has shown that the process appears to be an adaptive response that our bodies employ during times of stress or starvation, and which also helps protect our bodies against cancer and neurodegenerative diseases.

It’s unclear why older people become more susceptible to infections, but research has shown that autophagy does decrease with age. Dr. Levine, a professor of internal medicine and microbiology, said it is possible that by reversing or regulating this process, researchers could prevent the elderly and others with weakened immune systems from becoming more susceptible to infections.

For this study, the researchers studied the effects of Salmonella infections in two organisms they had genetically engineered to lack active autophagy genes. The organisms included Caenorhabditis elegans, a common research worm also known as a nematode, and Dictyostelium discoideum, a soil amoeba that functions much like certain cells in the human immune system.

In both cases, the animals with inactive autophagy genes fared far worse than those with active ones. Rather than being targeted for elimination, the Salmonella bacterium was able to invade the host cells, where it started replicating, Dr. Levine said.

She said the findings indicate that the autophagy process plays an important role in resistance to certain types of pathogens, specifically those that can enter inside our cells.

The next step, Dr. Levine said, is to begin studying the efficacy of a new autophagy-inducing molecule in treating a number of intracellular bacterial infections including salmonellosis, tuberculosis, tularemia and listeriosis.

Other UT Southwestern researchers involved in the study were Dr. Kailiang Jia, lead author and instructor in internal medicine; Dr. Muhammad Akbar, clinical instructor in internal medicine; Dr. Qihua Sun, research scientist in internal medicine; Beverley Adams-Huet, assistant professor of clinical sciences; Dr. Christopher Gilpin, assistant professor of cell biology; and Dr. Collin Thomas, a former research associate in internal medicine.

This study was supported by the National Institutes of Health and The Ellison Medical Foundation.

Visit www.utsouthwestern.org/infectiousdiseases to learn more about UT Southwestern’s clinical services for infectious diseases.

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>