Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cannibal cells may limit cancer growth

11.07.2017

Cell cannibalism in tumour samples has been observed for over a century, yet this unusual behaviour is not well studied. New research led by scientists at the Babraham Institute, Cambridge reveals a new mechanism driving cell cannibalism that offers surprising insights into cancer biology.

Cell cannibalism, also called entosis, occurs when one cell surrounds, kills and digests another. Entosis doesn't typically happen between healthy cells but it is common in tumours. This latest research, published in the journal eLife, reveals that cannibalism can be triggered by cell division; when one cell divides to form two. Since uncontrolled cell division is a key hallmark of cancer, this suggests that cannibalism may have a role to play in resisting cancer.


A cell in the process of dividing (centre) that is being engulfed by cells on either side. DNA is shown in blue and a protein responsible for attachment between cells is shown in green.

Credit: Dr Jo Durgan, Babraham Institute

The research, which also includes scientists from Memorial Sloan Kettering Cancer Centre, USA and the Francis Crick Institute in London, examined human epithelial cells. These cells form many of the surfaces in the body and give rise to over 80% of human cancers. Normally, epithelial cells remain firmly attached to their surroundings when they divide. This study shows that weakened attachments result in more cell cannibalism. This may explain why drugs that weaken cell attachments are effective anti-cancer drugs.

First author on the paper, Dr Jo Durgan, said: "We set out to identify the proteins that control cell cannibalism in tumour cells, but by using time-lapse microscopy to watch this process in action, we stumbled across a completely unexpected new mechanism. The link we've found to cell division is really intriguing from the perspective of cancer."

Cell cannibalism has a complex relationship with cancer and it is not totally clear whether it helps or hinders tumour growth. However, the discovery that dividing cells are more likely to be cannibalised by other cells suggests that entosis may help to slow or prevent cancer by causing cancer cells to be consumed and destroyed by nearby healthy cells.

Lead scientist on the paper, Dr Oliver Florey, said: "Entosis is a fascinating process that may play a role in normal physiology, as well as cancer. By studying entosis, we hope to gain insights into fundamental cell biology, as well as to explore intriguing new avenues for cancer research. After 100 years of observing 'cell-in-cell' structures, there is now an exciting push towards discoveries in both cell and cancer biology."

Jonathan Lawson | EurekAlert!

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>