Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer suppressor gene links metabolism with cellular aging

14.01.2013
Metabolic control of p53 points to new cancer therapeutics

It is perhaps impossible to overstate the importance of the tumor suppressor gene p53. It is the single most frequently mutated gene in human tumors. p53 keeps pre-cancerous cells in check by causing cells, among other things, to become senescent – aging at the cellular level. Loss of p53 causes cells to ignore the cellular signals that would normally make mutant or damaged cells die or stop growing.

In short, the p53 pathway is an obvious and attractive target for drug developers. But that strategy has so far proven difficult, as most p53 regulatory proteins operate via protein-protein interactions, which make for poor drug targets, as opposed to ones based on enzymes.

Now, a team of researchers from the Perelman School of Medicine, University of Pennsylvania, has identified a class of p53 target genes and regulatory molecules that represent more promising therapeutic candidates.

As Xiaolu Yang, PhD, professor of Cancer Biology and investigator in Penn's Abramson Family Cancer Research Institute, and his team describe in an advance online Nature publication, p53 participates in a molecular feedback circuit with malic enzymes, thereby showing that p53 activity is also involved in regulating metabolism.(The Yang lab identified p53's role in glucose metabolism in the past.)

The new findings, Yang says, suggest that p53 acts as a molecular sensor of metabolic stress and explains how metabolic stress can lead to senescence in cells.

"We uncovered an important regulatory mechanism for p53 as well as an effector mechanism for p53," Yang says.

Significantly, the findings also identify malic enzymes as novel and potentially useful pharmaceutical targets for anticancer therapy, as well as possible mediators of the normal aging process – though neither possibility was actually addressed in the current study.

As cells become damaged and precancerous, the p53 protein prevents those cells from continuing towards becoming tumors by causing the cells to senesce. Metabolic cues also regulate senescence, but the molecular relays coupling those two processes -- senescence and metabolism -- remained unknown.

Yang and his team decided to test if a pair of enzymes, malic enzyme 1 and malic enzyme 2 (ME1 and ME2), could be involved. Malic enzymes recycle malate – an intermediate molecule – back into an end-product of glycolysis – pyruvate – storing energy in the process. Malic enzymes are important for adjusting metabolic flux to suit proliferating cells' demands for energy and biosynthesis. Thus, these two enzymes are attuned to the energy and proliferative state of the cell.

Yang's team found that p53 inhibits malic enzyme expression, such that loss of p53 causes malic enzyme abundance to increase. Conversely, malic enzymes keep p53 in check; loss of malic enzymes ramps up p53 activation and induces senescence via either downregulation of a p53 inhibitor (Mdm2) or production of oxygen radicals. Overexpression of malic enzymes inhibits senescence.

The result, Yang explains, is a "feed-forward loop" in which activation of p53 suppresses malic enzyme expression, reducing malic enzyme levels and further upregulating p53, leading to senescence. On the other hand, upregulation of malic enzymes inhibits p53. p53 inhibition loosens the protein's grip on malic enzyme expression, allowing malic enzyme levels to rise.

"This is a circuit," he says. "Going around this loop, you get pretty robust activation."

These same results played out in animal models described in the Nature study. Loss of either ME1 or ME2 reduced tumor weight, even with p53-null tumor cells, which suggests an additional, p53-independent function of malic enzymes.And, overexpression of malic enzymes led to more substantial tumors.

According to Yang, the study pegs malic enzymes as molecular players linking senescence and metabolic state. Those enzymes could potentially serve as anticancer drug targets, he says. But equally important, they may also play a role in the normal process of cellular aging.

"Senescence is aging at the cellular level," says Yang, who notes that considerable research has demonstrated a correlation between caloric restriction and lifespan. "We may have identified a good starting point to understand how aging works."

Other co-authors include Peng Jiang, Wenjing Du, Anthony Mancuso, and Kathryn Wellen, all from Penn.

The study was funded by the National Cancer Institute (CA088868) and the Department of Defense (W81XWH-10-1-0468).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>