Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cells suppress immune response against brain tumor

18.01.2010
M. D. Anderson researchers discover mechanism that helps glioblastomas evade attack

Cancer-initiating cells that launch glioblastoma multiforme, the most lethal type of brain tumor, also suppress an immune system attack on the disease, scientists from The University of Texas M. D. Anderson Cancer Center report in a paper featured on the cover of the Jan. 15 issue of Clinical Cancer Research.

The researchers demonstrate that this subset of tumor cells, also known as cancer stem cells, stifles the immune response in a variety of ways, but that the effect can be greatly diminished by encouraging the stem cells to differentiate into other types of brain cell.

"We've known for years that glioblastoma and cancer patients in general have impaired immune responses," said senior author Amy Heimberger, M.D., an associate professor in M. D. Anderson's Department of Neurosurgery. "Our research uncovers an important mechanism that shows how that happens. The cancer stem cells inhibit T cell response, and it is these T cells that recognize and eradicate cancer."

Definitions of cancer stem cells vary. To meet the researchers' definition, the cells had to express a marker called CD133, form neurospheres (little round balls) in culture, and be able to recreate glioblastoma multiforme when injected into the brain of a mouse. They also had to be capable of differentiating into specific types of brain cells - neurons, astrocytes and glial cells.

Glioblastoma stem cells have been implicated in tumor resistance to chemotherapy and radiation, and are the believed to be responsible for the relentless recurrence of the disease, said first author Jun Wei, Ph.D., an instructor in the Department of Neurosurgery.

Wei explained that the glioblastoma stem cells suppress T cell response three different ways by:

Producing immunosuppressive cytokines that prevent the responses of T cells.
Inducing some T cells to become regulatory T cells, which act as brakes on the immune response.

Killing T cells via apoptosis, or programmed cell suicide. This is accomplished via the immunosuppressive protein B7-H1 in the stem cells directly contacting the T cells or by secretion of Galectin-3.

Wei said this immunosuppressive effect was reversed when the team placed the undifferentiated glioma stem cells in a culture medium that causes them to differentiate into the three types of neural cell.

"There are multiple research groups around the country, including ours, trying to develop vaccines or other immunotherapeutics against glioma stem cells," Heimberger said. "Now we have to be cognizant that the stem cell may deliver a fatal blow back to the immune system, which will help us understand how to design immune-based therapies."

New drugs or combination therapies are needed, because after decades of research, little progress has been made in treating glioblastoma multiforme. With the best of care patients survive an average of 14 months.

STAT3 pathway inhibits T cell response

In a separate paper in the Jan. 15 issue of Molecular Cancer Therapeutics, the research team also reports that the STAT3 signaling pathway is highly active in glioblastoma stem cells and suppresses immune system response.

Heimberger said the STAT3 molecule is known to induce cancer proliferation and survival migration and invasion, growth of new blood vessels, and immunosuppression.

Inhibiting STAT3, either by silencing it with small interfering RNA or by treatment with an experimental drug called WP1066, reactivates the immune response.

"We showed that if you treat the cancer stem cells with an inhibitor of STAT3, you can restore T cell proliferation and the ability of those cells to make pro-inflammatory cytokines," Heimberger said.

While the response is powerful it is not complete, so the researchers conclude there a STAT3-independent pathway is also at work in mediating immune suppression.

Research continues on how the inhibitors work, and whether they cause the stem cell differentiation that the team has shown reverses immune suppression.

The experimental drug WP1066 was developed by Waldemar Priebe, Ph.D., professor in M. D. Anderson's Department of Experimental Therapeutics. The drug has been shown to inhibit STAT3 in mice and reverse the immune suppression caused by cancer stem cells.

The research was funded by grants from the Anthony Bullock III Foundation, the Dr. Marnie Rose Foundation, M. D. Anderson and the National Cancer Institute.

Co-authors with Heimberger and Wei on both papers are Jason Barr, Ling-Yuan Kong, Ph.D.,Yongtao Wang, Adam Wu, M.D., Amit K. Sharma, Joy Gumin, Verlene Henry, Raymond Sawaya, M.D., and Frederick Lang, M.D., all of the Department of Neurosurgery; and Howard Colman, M.D., Ph.D., of M. D. Anderson's Department of Neuro-Oncology. Priebe is a co-author on the STAT3 paper.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>