Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cells suppress immune response against brain tumor

18.01.2010
M. D. Anderson researchers discover mechanism that helps glioblastomas evade attack

Cancer-initiating cells that launch glioblastoma multiforme, the most lethal type of brain tumor, also suppress an immune system attack on the disease, scientists from The University of Texas M. D. Anderson Cancer Center report in a paper featured on the cover of the Jan. 15 issue of Clinical Cancer Research.

The researchers demonstrate that this subset of tumor cells, also known as cancer stem cells, stifles the immune response in a variety of ways, but that the effect can be greatly diminished by encouraging the stem cells to differentiate into other types of brain cell.

"We've known for years that glioblastoma and cancer patients in general have impaired immune responses," said senior author Amy Heimberger, M.D., an associate professor in M. D. Anderson's Department of Neurosurgery. "Our research uncovers an important mechanism that shows how that happens. The cancer stem cells inhibit T cell response, and it is these T cells that recognize and eradicate cancer."

Definitions of cancer stem cells vary. To meet the researchers' definition, the cells had to express a marker called CD133, form neurospheres (little round balls) in culture, and be able to recreate glioblastoma multiforme when injected into the brain of a mouse. They also had to be capable of differentiating into specific types of brain cells - neurons, astrocytes and glial cells.

Glioblastoma stem cells have been implicated in tumor resistance to chemotherapy and radiation, and are the believed to be responsible for the relentless recurrence of the disease, said first author Jun Wei, Ph.D., an instructor in the Department of Neurosurgery.

Wei explained that the glioblastoma stem cells suppress T cell response three different ways by:

Producing immunosuppressive cytokines that prevent the responses of T cells.
Inducing some T cells to become regulatory T cells, which act as brakes on the immune response.

Killing T cells via apoptosis, or programmed cell suicide. This is accomplished via the immunosuppressive protein B7-H1 in the stem cells directly contacting the T cells or by secretion of Galectin-3.

Wei said this immunosuppressive effect was reversed when the team placed the undifferentiated glioma stem cells in a culture medium that causes them to differentiate into the three types of neural cell.

"There are multiple research groups around the country, including ours, trying to develop vaccines or other immunotherapeutics against glioma stem cells," Heimberger said. "Now we have to be cognizant that the stem cell may deliver a fatal blow back to the immune system, which will help us understand how to design immune-based therapies."

New drugs or combination therapies are needed, because after decades of research, little progress has been made in treating glioblastoma multiforme. With the best of care patients survive an average of 14 months.

STAT3 pathway inhibits T cell response

In a separate paper in the Jan. 15 issue of Molecular Cancer Therapeutics, the research team also reports that the STAT3 signaling pathway is highly active in glioblastoma stem cells and suppresses immune system response.

Heimberger said the STAT3 molecule is known to induce cancer proliferation and survival migration and invasion, growth of new blood vessels, and immunosuppression.

Inhibiting STAT3, either by silencing it with small interfering RNA or by treatment with an experimental drug called WP1066, reactivates the immune response.

"We showed that if you treat the cancer stem cells with an inhibitor of STAT3, you can restore T cell proliferation and the ability of those cells to make pro-inflammatory cytokines," Heimberger said.

While the response is powerful it is not complete, so the researchers conclude there a STAT3-independent pathway is also at work in mediating immune suppression.

Research continues on how the inhibitors work, and whether they cause the stem cell differentiation that the team has shown reverses immune suppression.

The experimental drug WP1066 was developed by Waldemar Priebe, Ph.D., professor in M. D. Anderson's Department of Experimental Therapeutics. The drug has been shown to inhibit STAT3 in mice and reverse the immune suppression caused by cancer stem cells.

The research was funded by grants from the Anthony Bullock III Foundation, the Dr. Marnie Rose Foundation, M. D. Anderson and the National Cancer Institute.

Co-authors with Heimberger and Wei on both papers are Jason Barr, Ling-Yuan Kong, Ph.D.,Yongtao Wang, Adam Wu, M.D., Amit K. Sharma, Joy Gumin, Verlene Henry, Raymond Sawaya, M.D., and Frederick Lang, M.D., all of the Department of Neurosurgery; and Howard Colman, M.D., Ph.D., of M. D. Anderson's Department of Neuro-Oncology. Priebe is a co-author on the STAT3 paper.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>