Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cells isolated from kidney tumours

13.12.2012
Scientists have isolated cancer stem cells that lead to the growth of Wilms’ tumours, a type of cancer typically found in the kidneys of young children.

The researchers have used these cancer stem cells to test a new therapeutic approach that one day might be used to treat some of the more aggressive types of this disease. The results are published online in EMBO Molecular Medicine.


Right-hand side: Kidney with Wilms' Tumour
Uta Mackensen, EMBO

“In earlier studies, cancer stem cells were isolated from adult cancers of the breast, pancreas and brain but so far much less is known about stem cells in paediatric cancers,” remarked Professor Benjamin Dekel, head of the Pediatric Stem Cell Research Institute and a senior physician at the Sheba Medical Center and the Sackler School of Medicine at Tel Aviv University, Israel. “Cancer stem cells contain the complete genetic machinery necessary to start, sustain and propagate tumour growth and they are often referred to as cancer-initiating cells. As such, they not only represent a useful system to study cancer development but they also serve as a way to study new drug targets and potential treatments designed to stop the growth and spread of different types of cancer.” He added: “We have demonstrated for the first time the presence of cancer stem cells in a type of tumour that is often found in the kidneys of young children.”

Wilms’ tumours are the most prevalent type of tumour found in the kidneys of children. While many patients respond well if the tumours are removed early by surgery and if patients are given chemotherapy, recurrences may occur and the cancer can spread to other tissues increasing the risks to the health of the patient. Conventional chemotherapy is toxic to all cells in the body and if given to children may lead to the development of secondary cancers when they become adults. Scientists are looking for ways to ensure that drugs are targeted specifically to tumour cells and some cells in a tumour may be more important to eradicate than others.

The researchers were able to remove parts of the tumours of cancer patients and graft them into mice. This procedure led to the growth of human tumours in mice. Cancer stem cells were identified in these tumours and it was shown that only the cancer stem cells and not the other cancer cells led to the development of new tumours upon grafting into additional mice. This process could be repeated multiple times and the animals could be used to study the development of cancer and test the action of potential new cancer drugs against Wilms’ tumours.

“We identified several biomarkers, including molecules that are on the cell surface, cell signaling molecules and microRNAs, that make it possible to distinguish between cancer stem cells or cancer-initiating cells and the rest of the cells in the tumour that are less likely to lead to cancer. In further experiments, we were able to show that an antibody drug that targets one such biomarker, the neural cell adhesion molecule, was able to either almost completely or in some cases completely eradicate the tumours that we induced in mice,” added Dekel. “This preliminary result suggests that the cancer stem cells that we have identified, isolated and propagated may serve as a useful tool to look for new drug targets as well as new drugs for the treatment of Wilms’ tumours.”

Further work is needed to identify more precisely how the antibody drug used in the study (lorvotuzumabmertansine) affects cancer stem cell populations and to test the long-term suitability of the antibody drug to treat Wilms’ tumours in humans.

Prospective isolation and characterization of renal cancer stem cells from human Wilms’ tumor xenografts provides new therapeutic targets

Naomi Pode-Shakked, Rachel Shukrun, Michal Mark-Danieli, Peter Tsvetkov, Sarit Bahar, Sara Pri-Chen, Ronald S. Goldstein, Eithan Rom-Gross, Yoram Mor, Edward Fridman, Karen Meir, Marcus Magister, Naftali Kaminski, Amos Simon, Victor S. Goldmacher, Orit Harari-Steinberg, Benjamin Dekel

Read the paper:
http://onlinelibrary.wiley.com/doi/10.1002/emmm.201201516/full
doi: 10.1002/emmm.201201516
Further information on EMBO Molecular Medicine is available at www.embomolmed.org
Media Contacts
Barry Whyte
Head | Public Relations and Communications
Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>