Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cells isolated from kidney tumours

13.12.2012
Scientists have isolated cancer stem cells that lead to the growth of Wilms’ tumours, a type of cancer typically found in the kidneys of young children.

The researchers have used these cancer stem cells to test a new therapeutic approach that one day might be used to treat some of the more aggressive types of this disease. The results are published online in EMBO Molecular Medicine.


Right-hand side: Kidney with Wilms' Tumour
Uta Mackensen, EMBO

“In earlier studies, cancer stem cells were isolated from adult cancers of the breast, pancreas and brain but so far much less is known about stem cells in paediatric cancers,” remarked Professor Benjamin Dekel, head of the Pediatric Stem Cell Research Institute and a senior physician at the Sheba Medical Center and the Sackler School of Medicine at Tel Aviv University, Israel. “Cancer stem cells contain the complete genetic machinery necessary to start, sustain and propagate tumour growth and they are often referred to as cancer-initiating cells. As such, they not only represent a useful system to study cancer development but they also serve as a way to study new drug targets and potential treatments designed to stop the growth and spread of different types of cancer.” He added: “We have demonstrated for the first time the presence of cancer stem cells in a type of tumour that is often found in the kidneys of young children.”

Wilms’ tumours are the most prevalent type of tumour found in the kidneys of children. While many patients respond well if the tumours are removed early by surgery and if patients are given chemotherapy, recurrences may occur and the cancer can spread to other tissues increasing the risks to the health of the patient. Conventional chemotherapy is toxic to all cells in the body and if given to children may lead to the development of secondary cancers when they become adults. Scientists are looking for ways to ensure that drugs are targeted specifically to tumour cells and some cells in a tumour may be more important to eradicate than others.

The researchers were able to remove parts of the tumours of cancer patients and graft them into mice. This procedure led to the growth of human tumours in mice. Cancer stem cells were identified in these tumours and it was shown that only the cancer stem cells and not the other cancer cells led to the development of new tumours upon grafting into additional mice. This process could be repeated multiple times and the animals could be used to study the development of cancer and test the action of potential new cancer drugs against Wilms’ tumours.

“We identified several biomarkers, including molecules that are on the cell surface, cell signaling molecules and microRNAs, that make it possible to distinguish between cancer stem cells or cancer-initiating cells and the rest of the cells in the tumour that are less likely to lead to cancer. In further experiments, we were able to show that an antibody drug that targets one such biomarker, the neural cell adhesion molecule, was able to either almost completely or in some cases completely eradicate the tumours that we induced in mice,” added Dekel. “This preliminary result suggests that the cancer stem cells that we have identified, isolated and propagated may serve as a useful tool to look for new drug targets as well as new drugs for the treatment of Wilms’ tumours.”

Further work is needed to identify more precisely how the antibody drug used in the study (lorvotuzumabmertansine) affects cancer stem cell populations and to test the long-term suitability of the antibody drug to treat Wilms’ tumours in humans.

Prospective isolation and characterization of renal cancer stem cells from human Wilms’ tumor xenografts provides new therapeutic targets

Naomi Pode-Shakked, Rachel Shukrun, Michal Mark-Danieli, Peter Tsvetkov, Sarit Bahar, Sara Pri-Chen, Ronald S. Goldstein, Eithan Rom-Gross, Yoram Mor, Edward Fridman, Karen Meir, Marcus Magister, Naftali Kaminski, Amos Simon, Victor S. Goldmacher, Orit Harari-Steinberg, Benjamin Dekel

Read the paper:
http://onlinelibrary.wiley.com/doi/10.1002/emmm.201201516/full
doi: 10.1002/emmm.201201516
Further information on EMBO Molecular Medicine is available at www.embomolmed.org
Media Contacts
Barry Whyte
Head | Public Relations and Communications
Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>