Cancer scientists discover novel way gene controls stem cell self-renewal

The research, published online today in Nature Immunology, provides an important piece in the puzzle of understanding the mechanisms that govern the blood stem cell self-renewal process, says principal investigator Norman Iscove, Senior Scientist at the Princess Margaret, University Health Network (UHN). Dr. Iscove is also an investigator at UHN's McEwen Centre for Regenerative Medicine and a Professor in the Faculty of Medicine, University of Toronto.

“Researchers have known for a long time that stem cells can increase their numbers in the body through self-renewal; however, it has proven very difficult to establish conditions for self-renewal in the laboratory,” says Dr. Iscove. Indeed, he explains, the quest to do so has been a holy grail for stem cell researchers because the very effectiveness, safety and availability of the transplantation procedure depend on the number of stem cells available to transplant.

In the lab and using genetically engineered mice, the Iscove team zeroed in on GATA3 and determined that interfering with its function causes stem cells to increase their self-renewal rate and thereby results in increased numbers of stem cells. Dr. Iscove expects scientists will be able to use this new information to improve their ability to grow increased numbers of blood stem cells for use in bone marrow transplantation and possibly, gene therapy.

Dr. Iscove's research is a new page in the growing volume of stem cell science that began here in 1961 with the ground-breaking discovery of blood-forming stem cells by Drs. James Till and the late Ernest McCulloch. Their discovery changed the course of cancer research and laid the foundation for bone marrow transplantation in leukemia patients, as well as for many other types of current disease research. The research published today was funded by the Terry Fox Foundation, the Canadian Cancer Society Research Institute, the Canadian Institutes of Health Research, the Stem Cell Network, the McEwen Centre for Regenerative Medicine, The Princess Margaret Cancer Foundation, The Campbell Family Institute for Cancer Research and the Ontario Ministry of Health and Long-term care.

About Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre has achieved an international reputation as a global leader in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto.

For more information, go to http://www.theprincessmargaret.ca or http://www.uhn.ca

Media Contact

Jane Finlayson EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors