Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer research: Enzyme inhibition with a surprise


In many tumours specific enzymes involved in regulating gene activity are heavily mutated. What effect could that have? Cell researchers from the University of Würzburg have looked into this question.

Matthias Becker and Professor Albrecht Müller, two molecular biologists from the Julius-Maximilians-Universität Würzburg (JMU) in Germany, are interested in the group of so-called KDM6 enzymes. These enzymes are very frequently mutated in bladder cancer, leukaemia and other cancer types so that they no longer function correctly.

Inhibition of KDM6 enzymes causes embryo-like cell structures to die. A comet assay shows that inhibition causes accumulated DNA damages: The bigger the "tail" around a cell, the greater the damage.

(Picture: Matthias Becker)

How exactly the mutations work inside the cancer cells is still unknown. But the Würzburg scientists have found first hints: The mutations seem to contribute to accumulating DNA damages.

All KDM6 enzymes inhibited

This finding has been made in experiments conducted by Christine Hofstetter, Becker's former doctoral student. The biologist inhibited the activity of all KDM6 enzymes in embryonic stem cells of mice and in embryo-like structures. The latter are spherical structures consisting of several hundred cells that cannot develop into an organism.

The embryo-like structures died as a result of enzyme inhibition. The JMU researchers detected massive accumulations of DNA damages in their cells. Surprisingly, these effects did not occur in the embryonic stem cells: Neither the gene activity nor the cells' ability to survive changed.

"We conclude from our results that there is a fundamental difference when treating DNA damages in stem cells and in the differentiated cells evolving from them," Becker says. The molecular biologists now intend to study this difference in more detail.

Published in the Journal of Cell Science

The detailed findings have been published in the Journal of Cell Science: Inhibition of KDM6 activity during murine ES cell differentiation induces DNA damage, Christine Hofstetter, Justyna M. Kampka, Sascha Huppertz, Heike Weber, Andreas Schlosser, Albrecht M. Müller, Matthias Becker, Journal of Cell Science 2016, DOI 10.1242/jcs.175174

The work was conducted within the scope of focal programme 1463 "Epigenetic Regulation of normal hematopoiesis and its dysregulation in myeloid neoplasia" funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

Facts about KDM6 enzymes

The investigated KDM6 enzymes are lysine-specific demetyhlases 6. In "normal mode", they remove methylations at the amino acid lysine 27 of histone H3, causing genes to be activated. Histones are proteins that package and order the DNA inside the cell nucleus. Moreover, they influence gene activity in the individual sections of the DNA.


Dr. Matthias Becker, Institut für Medizinische Strahlenkunde und Zellforschung, Julius-Maximilians-Universität Würzburg (JMU), Bavaria, Germany, Phone +49 931 201-45851,

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>