Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer rejection: Scientists discover crucial molecule

05.02.2009
Researchers at the Centenary Institute in Sydney have discovered a molecule on the surface of immune cells which plays a critical role in cancer rejection.

Using advanced multi-photon microscopy, the scientists have tracked the migration of immune cells called T cells within tumours in experimental models, and found that the surface molecule (CD44) directly impacts whether a tumour progresses or is rejected by T cells.

Professor Wolfgang Weninger, Head of the Immune Imaging program at Centenary, says this discovery advances our knowledge of the immune processes at play in cancer.

"The immune system and cancer were first linked in the 1900s but it wasn't until the 1980s that interactions between the immune system and cancer cells became a focus for medical researchers," says Professor Weninger.

"We know that migration of T cells within tumours is very important for rejection but we didn't know about how it worked. We found that this particular molecule regulates the navigation of T cells in tumours. In its absence, T cells are inhibited in migration and show a defect in their ability to reject a tumour."

Understanding how tumours avoid the natural processes of the immune system is one of the biggest questions in cancer. Finding the answer could significantly improve cancer treatment.

Professor Weninger explains: "By understanding how the immune system fights tumours, we may be able to optimise cancer therapies in the future. It may provide the opportunity to design treatments that mimic certain aspects of immune responses and cellular processes, making cancer treatments less hit and miss and reducing the toll on patients."

Centenary Institute Executive Director, Professor Mathew Vadas, points out this discovery has been made possible by recent advances in research technology – in particular multi-photon microscopy.

"Previously, cancer researchers could only build assumptions by linking series' of still images of the immune system at work," Professor Vadas says. "Multi-photon microscopy allows us to make real time movies showing exactly how the immune cells interact and is opening up new frontiers for medical research."

Professor Weninger, a world leader in this form of imaging, is driving this research revolution using one of Australia's first multi-photon microscopes at the Centenary Institute in Sydney.

This discovery firmly places Professor Weninger and his team's focus on the next piece of the puzzle - how does the actual process of tumour rejection work?

"This next stage of our research is very exciting. What are the physical interactions of T cells and tumours and how do the T cells actually defeat a tumour?" says Professor Weninger. "If we can get to the bottom of these immune system interplays, the benefits for cancer patients around the world could be truly enormous."

Erin Sharp | EurekAlert!
Further information:
http://researchaustralia.org/ra.aspx
http://www.centenary.org.au

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>