Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer rejection: Scientists discover crucial molecule

05.02.2009
Researchers at the Centenary Institute in Sydney have discovered a molecule on the surface of immune cells which plays a critical role in cancer rejection.

Using advanced multi-photon microscopy, the scientists have tracked the migration of immune cells called T cells within tumours in experimental models, and found that the surface molecule (CD44) directly impacts whether a tumour progresses or is rejected by T cells.

Professor Wolfgang Weninger, Head of the Immune Imaging program at Centenary, says this discovery advances our knowledge of the immune processes at play in cancer.

"The immune system and cancer were first linked in the 1900s but it wasn't until the 1980s that interactions between the immune system and cancer cells became a focus for medical researchers," says Professor Weninger.

"We know that migration of T cells within tumours is very important for rejection but we didn't know about how it worked. We found that this particular molecule regulates the navigation of T cells in tumours. In its absence, T cells are inhibited in migration and show a defect in their ability to reject a tumour."

Understanding how tumours avoid the natural processes of the immune system is one of the biggest questions in cancer. Finding the answer could significantly improve cancer treatment.

Professor Weninger explains: "By understanding how the immune system fights tumours, we may be able to optimise cancer therapies in the future. It may provide the opportunity to design treatments that mimic certain aspects of immune responses and cellular processes, making cancer treatments less hit and miss and reducing the toll on patients."

Centenary Institute Executive Director, Professor Mathew Vadas, points out this discovery has been made possible by recent advances in research technology – in particular multi-photon microscopy.

"Previously, cancer researchers could only build assumptions by linking series' of still images of the immune system at work," Professor Vadas says. "Multi-photon microscopy allows us to make real time movies showing exactly how the immune cells interact and is opening up new frontiers for medical research."

Professor Weninger, a world leader in this form of imaging, is driving this research revolution using one of Australia's first multi-photon microscopes at the Centenary Institute in Sydney.

This discovery firmly places Professor Weninger and his team's focus on the next piece of the puzzle - how does the actual process of tumour rejection work?

"This next stage of our research is very exciting. What are the physical interactions of T cells and tumours and how do the T cells actually defeat a tumour?" says Professor Weninger. "If we can get to the bottom of these immune system interplays, the benefits for cancer patients around the world could be truly enormous."

Erin Sharp | EurekAlert!
Further information:
http://researchaustralia.org/ra.aspx
http://www.centenary.org.au

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>