Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer protein discovery may aid radiation therapy

10.06.2011
Blocking cyclin D1 might help sensitize tumors to radiation

Scientists at Dana-Farber Cancer Institute have uncovered a new role for a key cancer protein, a finding that could pave the way for more-effective radiation treatment of a variety of tumors.

Many cancers are driven in part by elevated levels of cyclin D1, which allow the cells to escape growth controls and proliferate abnormally. In the new research, reported in the June 9 issue of Nature, researchers discovered that cyclin D1 also helps cancer cells to quickly repair DNA damage caused by radiation treatments, making the tumors resistant to the therapy.

Based on this finding, the researchers made cancer cells more sensitive to several cancer drugs and to radiation by using a molecular tool to lower the cancer cells' cyclin D1 levels, said Peter Sicinski, MD, PhD, senior author of the report and a professor of genetics at Dana-Farber.

"This is the first time a cell cycle protein has been shown to be directly involved in DNA repair," said Siwanon Jirawatnotai, PhD, the lead author of the paper. "If we could come up with a strategy to inhibit cyclin D1, it might be very useful in treating a variety of cancers."

The gene for cyclin D1 is the second most-overexpressed gene found in human cancers, including breast cancer, colon cancer, lymphoma, melanoma, and prostate cancer. Cyclin D1's normal function in cellular growth control is to temporarily remove a molecular brake, allowing the cell to manufacture more DNA in preparation for cell division. When cyclin D1 is mutated or is overactivated by external growth signals, the cell may run out of control and proliferate in a malignant fashion.

The findings came in a series of experiments by Jirawatnotai, a post-doctoral fellow in the Sicinski lab. With the goal of uncovering details of cyclin D1's function in human cancer cells, Jirawatnotai broke open four types of cancer cells, isolated the cyclin D1 protein, and searched for other proteins with which it interacted.

The experiment netted more than 132 partner proteins, most of them part of the cell cycle protein mechanism in which cyclin D1 is a major player. But unexpectedly, the scientists also observed that the cyclin D1 protein was binding to a cluster of DNA repair proteins, most importantly RAD51. The RAD51 protein is an enzyme that rushes to broken parts of the cancer cell's DNA instructions and repairs the damage, including damage caused by radiation therapy administered to stop cancer cells' division and growth. In another experiment, it was observed that cyclin D1 was recruited along with RAD51 to the DNA damage site.

"This was a surprise," said Jirawatnotai. "This finding showed that cyclin D1 has an unexpected function in repairing broken DNA." In additional experiments, he used a molecular tool, RNA interference (RNAi) to drastically reduce the level of cyclin D1 in the cancer cells. "When you lower D1 levels, you get poorer repair," he said.

When cancer cells with reduced cyclin D1 protein levels were administered to mice, the resulting tumor proved to be more sensitive to radiation than those grown from cells with overexpressed cyclin D1.

Currently, cyclin D1 is thought to be responsible for driving cancer cell proliferation. Agents that target cyclin D1 are currently in clinical trials, with the goal of reducing cancer cell growth. The new findings strongly suggest that targeting cyclin D1 may increase susceptibility of human cancers to radiation, said the scientists, and this discovery may encourage targeting cyclin D1 even in these cancers whose cells do not depend on cyclin D1 for proliferation.

"Our results potentially change the way we think about cyclin D1 and cancer and may encourage targeting cyclin D1 in a very large pool of human cancers which do not need cyclin D1 for proliferation, but may still depend on cyclin D1 for DNA repair," said Jirawatnotai, who also holds a faculty position at the Mahidol University in Bangkok, Thailand.

In addition to Sicinski and Jirawatnotai, the paper's other authors include Wojciech Michowski, PhD, Yiduo Hu, PhD, Lisa Becks, Yaoyu Wang, PhD, John Quackenbush, PhD, Mick Correll, and David Livingston, MD, Dana-Farber; and Steven Gygi, PhD, Harvard Medical School.

The research was supported by grants from the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>