Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Protein's Surprising Role as Memory Regulator

26.09.2011
Finding could be relevant to Alzheimer's disease treatment

Scientists at Dana-Farber Cancer Institute and Harvard Medical School have found that a common cancer protein leads a second, totally different life in normal adult brain cells: It helps regulates memory formation and may be implicated in Alzheimer's disease.

Cyclin E is a well-known culprit that drives many types of solid tumors and blood cancers. The report, published online in Developmental Cell, is the first revelation that cyclin E has a crucial role in the formation of nerve connections, or synapses, in the brain. Synapses are tiny connections between brain cells where memories are stored.

"This protein has a double life," said Peter Sicinski, PhD, a cancer biologist at Dana-Farber and senior author of the publication. "It is overexpressed in many different cancers, but it also is expressed in high levels in the human brain. We have found that cyclin E is needed for memory formation and is a very important player."

The researchers found potential evidence linking cyclin E to Alzheimer’s disease, because it binds to an enzyme called Cdk5 that is involved in memory.

"There is good evidence that hyperactivity of Cdk5 contributes to Alzheimer's disease and inhibiting this enzyme can ameliorate symptoms in animals," said Sicinski, who is also a professor of Genetics at Harvard Medical School. "Manipulating cyclin E levels might be another way to accomplish this."

The scientists didn’t test cyclin E in Alzheimer’s mice, but they did show that when cyclin E binds to Cdk5 molecules, it locks them away in an unusable form. Moreover, when the researchers reduced cyclin E levels in mouse brain cells, fewer nerve connections formed and the animals' memories suffered.

Cyclins are a family of related proteins found in dividing cells. They serve as biological switches, controlling a cell's progression from one phase of its life cycle to the next. The actual signals to exit one phase and enter the next are issued by enzymes called cyclin-dependent kinases, or Cdks, that bind to cyclins.

Many types of cancer cells, including breast, ovarian, colon, and blood cancers, are driven by the overexpression of cyclin E, which acts like a car's accelerator pressed to the floor, speeding the cells through their growth-and-division cycle and allowing tumors to form and spread.

Though cyclin E is mainly found in dividing cells, researchers discover about a decade ago that cyclin E is also plentiful in adult, differentiated brain cells. But what it was doing there, no one knew.

In the current Developmental Cell paper, Junko Odajima, PhD, a postdoctoral fellow in the Sicinski laboratory and the paper's co-lead author (with Zachary P. Wills, PhD, from Harvard Medical School), showed that cyclin E in the brain attaches itself to the Cdk5 enzyme. When cyclin E molecules bind to and inactive Cdk5, synapses formation is increased, and, presumably, memory function improves.

Odajima tested this idea using a standard memory and learning test in which mice swimming in water must find a submerged platform to rest on, and remember its location in subsequent trials. The researchers then move the platform, requiring the animals to "forget" its previous location and learn and remember the new one.

As their hypothesis had suggested, mice deficient in cyclin E performed worse than rodents who had a normal amount of cyclin E. This contrast highlighted the importance of cyclin E for learning and memory.

Whether cyclin E levels rise and fall in the mouse brain during learning tasks is a topic of further research, said the scientists, who also plan to determine whether abnormal cyclin E levels can be linked to neurological diseases and learning disorders.

Other authors on the publication include Jarrod Marto, PhD, of Dana-Farber, Michael E. Greenberg, PhD, of Harvard Medical School, and Stephen J. Moss from Tufts University School of Medicine.

The National Institutes of Health supported the research.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Follow Dana-Farber on Twitter: @danafarber

Follow Dana-Farber on Facebook: https://www.facebook.com/danafarbercancerinstitute

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>