Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-associated long non-coding RNA regulates pre-mRNA splicing

24.09.2010
Researchers report this month that MALAT1, a long non-coding RNA that is implicated in certain cancers, regulates pre-mRNA splicing – a critical step in the earliest stage of protein production. Their study appears in the journal Molecular Cell.

Nearly 5 percent of the human genome codes for proteins, and scientists are only beginning to understand the role of the rest of the "non-coding" genome. Among the least studied non-coding genes – which are transcribed from DNA to RNA but generally are not translated into proteins – are the long non-coding RNAs (lncRNAs).

Before the human genome was fully sequenced, it was a "protein-centric world," said University of Illinois cell and developmental biology professor Kannanganattu Prasanth, who led the study. With the sequencing of the genome it became clear, however, that a majority of genes code for RNAs that are not translated into proteins.

In recent years, research on non-coding RNAs has blossomed, but most studies have focused only on small non-coding RNAs, which play critical roles in several aspects of cellular function. There have been comparatively fewer studies on lncRNAs, Prasanth said. As a result, researchers are only beginning to understand the functions of a few lncRNAs.

Prasanth's laboratory focuses on understanding the role of lncRNAs, such as MALAT1, which normally are distributed in the nucleus of mammalian cells.

Preliminary studies suggest that lncRNAs carry out vital regulatory functions in cells. When those functions go awry, Prasanth said, serious consequences can result. Abnormal expression of the MALAT1 gene, for example, is implicated in many cancers, including breast, lung and liver cancers, "so the scientific world was interested in what this RNA could be doing in normal cells, and how changes in its expression correlate with cancer," he said.

Prasanth was also the co-first-author of another study, recently published in The EMBO Journal, that found that MALAT1 plays a role in recruiting important proteins, called pre-mRNA splicing factors, to the site of gene transcription in the nucleus.

Pre-mRNA splicing involves cutting out unneeded sequences and piecing the mRNAs together before they are exported from the nucleus and translated into proteins.

"That study gave us the clue that MALAT1 is an important gene that might be involved in pre-mRNA metabolism," Prasanth said.

In the new study, Prasanth and his colleagues tested the hypothesis that MALAT1 interacts with and modulates the behavior of a group of pre-mRNA splicing factors known as the SR-family splicing factors.

The researchers found that the MALAT1 sequence contains multiple regions that can bind SR-splicing proteins. Further experiments showed that MALAT1 does indeed bind to several members of the SR-proteins the team analyzed.

Furthermore, depleting cells of MALAT1 or over-expressing the splicing factors to which it can bind led to the same alteration in the splicing of a large number of pre-mRNAs in the cells, suggesting that MALAT1 latches onto the splicing factors and regulates their access to new transcripts.

"All of the data strongly suggest that MALAT1 is acting as a regulator of splicing by modulating the levels of the splicing factors in the cell," Prasanth said.

This study verifies that MALAT1 plays a key role in pre-mRNA processing, with broad implications for human health, Prasanth said.

"Numerous studies have shown that aberrant splicing of pre-mRNA is a major issue associated with several diseases, including cancer," he said. "Some of the factors we know interact with MALAT1 have been shown to be oncogenes. If you over-express these genes you can make a cell cancerous."

"Similarly, some of the genes whose pre-mRNA splicing is controlled by MALAT1 are members of the cancer 'signature genes,' " Prasanth said. "This means that their abnormal expression is directly correlated with several cancers."

Post-doctoral researcher Vidisha Tripathi led this work, with assistance from undergraduate student David Song. Supriya Prasanth, a professor of cell and developmental biology at Illinois, and her graduate student, Zhen Shen, also contributed to the study. The research team also included scientists from the University of Toronto; ISIS Pharmaceuticals, Carlsbad, Calif.; and Wright State University, Dayton, Ohio.

Editor's notes: To reach Kannanganattu Prasanth, e-mail
kumarp@illinois.edu

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>