Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-associated long non-coding RNA regulates pre-mRNA splicing

24.09.2010
Researchers report this month that MALAT1, a long non-coding RNA that is implicated in certain cancers, regulates pre-mRNA splicing – a critical step in the earliest stage of protein production. Their study appears in the journal Molecular Cell.

Nearly 5 percent of the human genome codes for proteins, and scientists are only beginning to understand the role of the rest of the "non-coding" genome. Among the least studied non-coding genes – which are transcribed from DNA to RNA but generally are not translated into proteins – are the long non-coding RNAs (lncRNAs).

Before the human genome was fully sequenced, it was a "protein-centric world," said University of Illinois cell and developmental biology professor Kannanganattu Prasanth, who led the study. With the sequencing of the genome it became clear, however, that a majority of genes code for RNAs that are not translated into proteins.

In recent years, research on non-coding RNAs has blossomed, but most studies have focused only on small non-coding RNAs, which play critical roles in several aspects of cellular function. There have been comparatively fewer studies on lncRNAs, Prasanth said. As a result, researchers are only beginning to understand the functions of a few lncRNAs.

Prasanth's laboratory focuses on understanding the role of lncRNAs, such as MALAT1, which normally are distributed in the nucleus of mammalian cells.

Preliminary studies suggest that lncRNAs carry out vital regulatory functions in cells. When those functions go awry, Prasanth said, serious consequences can result. Abnormal expression of the MALAT1 gene, for example, is implicated in many cancers, including breast, lung and liver cancers, "so the scientific world was interested in what this RNA could be doing in normal cells, and how changes in its expression correlate with cancer," he said.

Prasanth was also the co-first-author of another study, recently published in The EMBO Journal, that found that MALAT1 plays a role in recruiting important proteins, called pre-mRNA splicing factors, to the site of gene transcription in the nucleus.

Pre-mRNA splicing involves cutting out unneeded sequences and piecing the mRNAs together before they are exported from the nucleus and translated into proteins.

"That study gave us the clue that MALAT1 is an important gene that might be involved in pre-mRNA metabolism," Prasanth said.

In the new study, Prasanth and his colleagues tested the hypothesis that MALAT1 interacts with and modulates the behavior of a group of pre-mRNA splicing factors known as the SR-family splicing factors.

The researchers found that the MALAT1 sequence contains multiple regions that can bind SR-splicing proteins. Further experiments showed that MALAT1 does indeed bind to several members of the SR-proteins the team analyzed.

Furthermore, depleting cells of MALAT1 or over-expressing the splicing factors to which it can bind led to the same alteration in the splicing of a large number of pre-mRNAs in the cells, suggesting that MALAT1 latches onto the splicing factors and regulates their access to new transcripts.

"All of the data strongly suggest that MALAT1 is acting as a regulator of splicing by modulating the levels of the splicing factors in the cell," Prasanth said.

This study verifies that MALAT1 plays a key role in pre-mRNA processing, with broad implications for human health, Prasanth said.

"Numerous studies have shown that aberrant splicing of pre-mRNA is a major issue associated with several diseases, including cancer," he said. "Some of the factors we know interact with MALAT1 have been shown to be oncogenes. If you over-express these genes you can make a cell cancerous."

"Similarly, some of the genes whose pre-mRNA splicing is controlled by MALAT1 are members of the cancer 'signature genes,' " Prasanth said. "This means that their abnormal expression is directly correlated with several cancers."

Post-doctoral researcher Vidisha Tripathi led this work, with assistance from undergraduate student David Song. Supriya Prasanth, a professor of cell and developmental biology at Illinois, and her graduate student, Zhen Shen, also contributed to the study. The research team also included scientists from the University of Toronto; ISIS Pharmaceuticals, Carlsbad, Calif.; and Wright State University, Dayton, Ohio.

Editor's notes: To reach Kannanganattu Prasanth, e-mail
kumarp@illinois.edu

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>