Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer-linked FAM190A gene found to regulate cell division

Johns Hopkins cancer scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis, and the scientists' research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.

In laboratory studies of cells, investigators found that knocking down expression of FAM190A disrupts mitosis. In three pancreatic cancer-cell lines and a standard human-cell line engineered to be deficient in FAM190A, researchers observed that cells often had difficulty separating at the end of mitosis, creating cells with two or more nuclei.

The American Journal of Pathology published a description of the work online May 17, which comes nearly a century after German scientist Theodor Boveri linked abnormal mitosis to cancer. Until now, there had been no common gene alteration identified as the culprit for cancer-linked mitosis.

"These cells try to divide, and it looks like they succeed, except they wind up with a strand that connects them," explains Scott Kern, M.D., professor of oncology and pathology at Johns Hopkins University School of Medicine and its Kimmel Cancer Center. "The next time they try to divide, all the nuclei come together, and they try to make four cells instead of two. Subsequently, they try to make eight cells, and so on." Movies of the process taken by Kern's laboratory are available on the journal Web site.

Kern's group previously reported that deletions in the FAM190A gene could be found in nearly 40 percent of human cancers. That report, published in 2011 in the journal Oncotarget, and the current one are believed to be the only published papers focused solely on FAM190A, which is frequently altered in human cancers but whose function has been unknown. Alterations in FAM190A messages may be the third most common in human cancers after those for the more well-known genes p53 and p16, Kern says.

"We don't think that a species can exist without FAM190, but we don't think severe defects in FAM190A readily survive among cancers," Kern says. "The mutations seen here are very special – they don't take out the whole gene but instead remove an internal portion and leave what we call the reading frame. We think we're finding a more subtle defect in human cancers, in which mitosis defects can occur episodically, and we propose it may happen in about 40 percent of human cancers."

Abnormalities in FAM190A may cause chromosomal imbalances seen so commonly in cancers, Kern says. Multipolar mitosis is one of the most common functional defects reported in human cancers, and more than 90 percent of human cancers have abnormal numbers of chromosomes.

Kern says he plans to study FAM190A further by creating lab models of the subtle defects akin to what actually is tolerated by human cancer cells.

The work was supported by the National Institutes of Health (National Cancer Institute, CA134292, CA62924, CA128920) and by the Everett and Marjorie Kovler Professorship in Pancreas Cancer Research. Co-authors were Kalpesh Patel, Francesca Scrimieri, Soma Ghosh, Jun Zhong, Min-Sik Kim, Yunzhao R. Ren, Richard A. Morgan, Christine A. Iacobuzio-Donahue, and Akhilesh Pandey of Johns Hopkins.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's mission is to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, more than 38 primary health care outpatient sites and other businesses that care for national and international patients and activities. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years by U.S. News & World Report.

Johns Hopkins Kimmel Cancer Center
Office of Public Affairs
Media Contacts:
Vanessa Wasta
Amy Mone

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>