Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Cancer-Fighting Power – Mouse with Highly Effective Components of the Human Immune System

09.08.2010
How to make the immune system more potent against cancer? Researchers of the Max Delbrück Center (MDC) and Charité Universitätsmedizin in Berlin, Germany, have dedicated ten years of research to modify T cell receptors (TCRs), the antenna-like structures of T cells, so that that they would no longer ignore cancer cells, but instead specifically track and recognize them. This modification is the precondition for the immune system to destroy cancer cells. The researchers developed a mouse with a whole repertoire of these human T cell receptors (Nature Medicine, doi: 10.1038/nm.2197)* with the aim of utilizing these receptors in the future for targeted immunotherapy in patients.

The T cells of the immune system possess receptors on their surface with which they can recognize bacteria, viruses, and fungi and which enable the immune system to fight against foreign invaders and destroy them. At the same time, however, T cells must differentiate between “self” and “foreign” – between the body’s own proteins and foreign proteins – so that the immune system tolerates the body’s own tissue. If the immune system is no longer able to make this differentiation, it attacks “self” structures, leading to autoimmune diseases such as type 1 diabetes or multiple sclerosis.

In cancer diseases, however, the immune system appears to be restricted in its response. Cancer cells originate from the body’s own tissue, which is why the immune system obviously has trouble recognizing them – and that, although cancer cells often have antigens (from the Greek word antigennan meaning “produce against”) which make them recognizable as tumor cells and pathologically altered cells.

Professor Thomas Blankenstein and his research team at the MDC and Charité want to break this tolerance towards cancer cells. In their research they utilized a process which in mammals automatically makes mature immune cells out of immature T cells. Immature T cells do not yet possess any T cell receptors and thus have to migrate from the bone marrow to the thymus. In this gland, which is part of the immune system, the T cell receptor genes, with which the T cell recognizes antigens, undergo random gene rearrangement.

Each of the millions of generated T cells expresses only one T cell receptor on the cell surface with which an antigen is recognized. In the thymus, however, all T cells which recognize “self” structures are deactivated. T cells which specifically target foreign antigens are spared from these tolerance mechanisms. The mouse, for example, does not develop any tolerance toward human cancer cell antigens.

“Probably no other transgenic mouse has that many human gene segments”
T cell receptors (TCR) consist of an alpha and a beta chain. Professor Blankenstein and his research team increased the DNA building blocks of humans for these chains with the aid of an artificial chromosome (YAC - yeast artificial chromosome) and then introduced them into embryonic stem cells of the mouse. Altogether there were approximately 2 million DNA building blocks, corresponding to 2 megabases or around 170 gene segments. “Probably no other transgenic mouse has that many human gene segments,” said Professor Blankenstein.
Transgenic mouse with human T cell receptors
In ten years of developmental work the researchers in Berlin used embryonic stem cells loaded with human DNA to breed transgenic mice, which possess all possible human T cell receptors on their T cells. “These human T cell receptors in the mouse recognize human antigens of human cancer cells. For the mice human tumor antigens are foreign,” Professor Blankenstein explained. “Such highly effective T cell receptors do not exist in humans. They are destroyed in humans in order to prevent them from attacking the body’s own structures. Only T cells remain with less effective T cell receptors,” he stressed.

The researchers aim to isolate these high-affinity human T cell receptors of the mouse, for which human cancer antigens are foreign, and to introduce them into the T cells of cancer patients. In this way the patients’ ineffective T cells shall be boosted in their effectiveness to destroy the cancer cells. In contrast to a bone marrow transplantation, in which many T cells of the transplant are activated in the recipient, which can lead to life-threatening destruction of healthy cells, this therapy approach is very selective. With this method the researchers hope to avoid an overreaction of the immune system.

Whether the highly upgraded human T cells from the mouse preserve their great effectiveness in humans remains to be seen. At present the researchers are preparing a first clinical trial, in which they will test the effectiveness and tolerance of these T cell receptors in cancer patients.

Professor Blankenstein is also spokesperson of the transregional collaborative research program “Principles and Applications of Adoptive T Cell Therapy” in Berlin and Munich. This program, funded by the German Research Foundation until 2014, explores new approaches to cancer treatment with the aid of the immune system. Participants in this program along with the MDC and the Charité in Berlin are the German Rheumatism Research Center Berlin and in Munich the Helmholtz Zentrum München – German Research Center for Environmental Health and two universities, Technische Universität München (TUM) and Ludwig-Maximilians-Universität (LMU).

A photo and graphics can be downloaded from the internet at:
http://www.mdc-berlin.de/de/index.html
*Transgenic mice with a diverse human T-cell antigen receptor repertoire
Liang-Ping Li1,2*, J. Christoph Lampert1,2*, Xiaojing Chen1,2, Catarina Leitao1,2, Jelena Popoviæ1,2, Werner Müller3 and Thomas Blankenstein1,2
1 Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092 Berlin, Germany
2 Institute of Immunology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany

3 Bill Ford Chair in Cellular Immunology, University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, M13 9PT

*These authors contributed equally to this work

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Claudia Peter
Stv. Leiterin Unternehmenskommunikation
Charité - Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Phone: +49-(0) 30 450 570 - 503
Fax: +49-(0) 30 450 570 - 940
e-mail: Claudia.Peter@charite.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.charite.de/
http://www.mdc-berlin.de/
http://www.sfb-tr36.com/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>