Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer epigenetics: breakthrough in ID’ing target genes

CPRIT grant helps Rice, BCM crack problem of predicting gene targets for PcG proteins

Cancer is usually attributed to faulty genes, but growing evidence from the field of cancer epigenetics indicates a key role for the gene “silencing” proteins that stably turn genes off inside the cell nucleus.

A new study from Rice University and Baylor College of Medicine (BCM) promises to speed research in the field by rapidly identifying the genes that epigenetic proteins can target for silencing.

The study, which appears this week in Nucleic Acids Research, shows how a new computer program called EpiPredictor can search any genome to identify specific genes affected by epigenetic proteins. The research includes detailed experimental findings that verify EpiPredictor’s results. The research was funded in part by the Cancer Prevention Research Institute of Texas (CPRIT).
In work that could shed light on the molecular workings of cancer cells, researchers from Rice University and Baylor College of Medicine have developed a method to rapidly identify genes that can be targeted for silencing. The team includes (clockwise from left) Qinghua Wang, Jianpeng Ma, Brian Kirk, Jia Zeng and Yufeng Gou.

“Cancer epigenetics is a new field, and we are still struggling with the basics,” said lead investigator Jianpeng Ma, professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at BCM. “It’s something like a board game. Until now, we’ve understood some of the rules and seen a few of the pieces, but the game board itself has been mostly blank. EpiPredictor lets everyone see the board. It really changes things.”

While many cancers have been linked to mutations in the DNA sequence of particular genes, epigenetic changes do not involve genetic mutations. Instead, epigenetics allows two cells with identical DNA sequences to behave in wholly different ways. Epigenetic proteins effectively edit the genome by turning off genes that are not needed. This editing process is what allows human beings to have specialized cells — like nerve cells, bone cells and blood cells — that look and behave differently, even though they share the same DNA.

The key epigenetic players in cancer are a family of proteins called polycomb-group (PcG) proteins. PcGs are found deep inside the nucleus of cells, in the chamber where DNA is stored. Studies have found abnormally high levels of PcGs in some of the most aggressive forms of breast and prostate cancer.

PcGs are generalists that can be called upon to silence any one of several hundred to several thousand genes. They are recruited to this task by polycomb response elements (PREs), segments of DNA that are located next to the genes the proteins subsequently silence. This is where the playing board goes blank; though scientists know there are literally hundreds to thousands of potential PREs in any given genome — including everything from simple insects to human beings — only a few PREs have ever been found.

“So far, only two PREs have been experimentally verified in mammals — one in mice and one in humans,” said EpiPredictor creator Jia Zeng, a BCM postdoctoral research associate. “We suspect there are so many of them, but finding them has been difficult.”

Zeng, a computer scientist, had no formal biology training when she joined Ma’s laboratory under a CPRIT-funded training program for computational cancer research.

“One of the biggest challenges since the completion of the Human Genome Project has been how to dig useful information out of the enormous amount of genomic data,” Ma said.

Ma said Zeng’s new method for zeroing in on PRE sequences is broadly applicable for genomic data mining in areas beyond cancer research.

“Determining the function of a gene based solely on sequence data is virtually impossible,” Ma said. “Recognizing this, Jia applied some advanced tools from computer science to create a learning program that could be trained to look for PRE sequences based upon the scant experimental data that were available.”

In tests on the genome of the fruit fly Drosphilia melanogaster, the EpiPredictor program found almost 300 epigenetic target genes. Experimental research by Ma’s longtime collaborator, BCM biochemist Qinghua Wang, verified that the EpiPredictor predictions were biologically significant.

“We are now working on using the method to scan the human genome to search for potential genes that play a role in cancer epigenetics,” said Wang, assistant professor of biochemistry and molecular biology. “We also hope that others will explore how this new method may help to identify the location and function of genes beyond the realm of epigenetics.”

Co-authors include Rice graduate students Yufeng Gou and Brian Kirk, a predoctoral training fellow in the National Library of Medicine Training Program of the Keck Center of the Gulf Coast Consortia. The research was supported by the National Institutes of Health, the National Science Foundation, the Welch Foundation and the John and Ann Doerr Fund for Computational Biomedicine at Rice University. Zeng’s CPRIT fellowship is administered by the Keck Center Computational Cancer Biology Training Program of the Gulf Coast Consortia.

A high-resolution image is available for download at:

CAPTION: In work that could shed light on the molecular workings of cancer cells, researchers from Rice University and Baylor College of Medicine have developed a method to rapidly identify genes that can be targeted for silencing. The team includes (clockwise from left) Qinghua Wang, Jianpeng Ma, Brian Kirk, Jia Zeng and Yufeng Gou.
CREDIT: Jeff Fitlow/Rice University

A copy of the Nucleic Acids Research paper is available at:

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to

Jade Boyd | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>