Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer epigenetics: breakthrough in ID’ing target genes

14.03.2012
CPRIT grant helps Rice, BCM crack problem of predicting gene targets for PcG proteins

Cancer is usually attributed to faulty genes, but growing evidence from the field of cancer epigenetics indicates a key role for the gene “silencing” proteins that stably turn genes off inside the cell nucleus.

A new study from Rice University and Baylor College of Medicine (BCM) promises to speed research in the field by rapidly identifying the genes that epigenetic proteins can target for silencing.

The study, which appears this week in Nucleic Acids Research, shows how a new computer program called EpiPredictor can search any genome to identify specific genes affected by epigenetic proteins. The research includes detailed experimental findings that verify EpiPredictor’s results. The research was funded in part by the Cancer Prevention Research Institute of Texas (CPRIT).
In work that could shed light on the molecular workings of cancer cells, researchers from Rice University and Baylor College of Medicine have developed a method to rapidly identify genes that can be targeted for silencing. The team includes (clockwise from left) Qinghua Wang, Jianpeng Ma, Brian Kirk, Jia Zeng and Yufeng Gou.

“Cancer epigenetics is a new field, and we are still struggling with the basics,” said lead investigator Jianpeng Ma, professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at BCM. “It’s something like a board game. Until now, we’ve understood some of the rules and seen a few of the pieces, but the game board itself has been mostly blank. EpiPredictor lets everyone see the board. It really changes things.”

While many cancers have been linked to mutations in the DNA sequence of particular genes, epigenetic changes do not involve genetic mutations. Instead, epigenetics allows two cells with identical DNA sequences to behave in wholly different ways. Epigenetic proteins effectively edit the genome by turning off genes that are not needed. This editing process is what allows human beings to have specialized cells — like nerve cells, bone cells and blood cells — that look and behave differently, even though they share the same DNA.

The key epigenetic players in cancer are a family of proteins called polycomb-group (PcG) proteins. PcGs are found deep inside the nucleus of cells, in the chamber where DNA is stored. Studies have found abnormally high levels of PcGs in some of the most aggressive forms of breast and prostate cancer.

PcGs are generalists that can be called upon to silence any one of several hundred to several thousand genes. They are recruited to this task by polycomb response elements (PREs), segments of DNA that are located next to the genes the proteins subsequently silence. This is where the playing board goes blank; though scientists know there are literally hundreds to thousands of potential PREs in any given genome — including everything from simple insects to human beings — only a few PREs have ever been found.

“So far, only two PREs have been experimentally verified in mammals — one in mice and one in humans,” said EpiPredictor creator Jia Zeng, a BCM postdoctoral research associate. “We suspect there are so many of them, but finding them has been difficult.”

Zeng, a computer scientist, had no formal biology training when she joined Ma’s laboratory under a CPRIT-funded training program for computational cancer research.

“One of the biggest challenges since the completion of the Human Genome Project has been how to dig useful information out of the enormous amount of genomic data,” Ma said.

Ma said Zeng’s new method for zeroing in on PRE sequences is broadly applicable for genomic data mining in areas beyond cancer research.

“Determining the function of a gene based solely on sequence data is virtually impossible,” Ma said. “Recognizing this, Jia applied some advanced tools from computer science to create a learning program that could be trained to look for PRE sequences based upon the scant experimental data that were available.”

In tests on the genome of the fruit fly Drosphilia melanogaster, the EpiPredictor program found almost 300 epigenetic target genes. Experimental research by Ma’s longtime collaborator, BCM biochemist Qinghua Wang, verified that the EpiPredictor predictions were biologically significant.

“We are now working on using the method to scan the human genome to search for potential genes that play a role in cancer epigenetics,” said Wang, assistant professor of biochemistry and molecular biology. “We also hope that others will explore how this new method may help to identify the location and function of genes beyond the realm of epigenetics.”

Co-authors include Rice graduate students Yufeng Gou and Brian Kirk, a predoctoral training fellow in the National Library of Medicine Training Program of the Keck Center of the Gulf Coast Consortia. The research was supported by the National Institutes of Health, the National Science Foundation, the Welch Foundation and the John and Ann Doerr Fund for Computational Biomedicine at Rice University. Zeng’s CPRIT fellowship is administered by the Keck Center Computational Cancer Biology Training Program of the Gulf Coast Consortia.

A high-resolution image is available for download at:
http://news.rice.edu/wp-content/uploads/2012/03/0301_MA.jpg

CAPTION: In work that could shed light on the molecular workings of cancer cells, researchers from Rice University and Baylor College of Medicine have developed a method to rapidly identify genes that can be targeted for silencing. The team includes (clockwise from left) Qinghua Wang, Jianpeng Ma, Brian Kirk, Jia Zeng and Yufeng Gou.
CREDIT: Jeff Fitlow/Rice University

A copy of the Nucleic Acids Research paper is available at:
http://nar.oxfordjournals.org/content/early/2012/03/12/nar.gks209.full

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>