Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Drug Taxol Promotes Nerve Growth within Central Nervous System

17.02.2011
Using the optic nerve model, medical scientists from Düsseldorf / Ulm, Germany, headed by Prof. Dr. Dietmar Fischer, have demonstrated that paclitaxel, an approved cancer drug known as Taxol for two decades, facilitates the regeneration of nerve fibers, called axons, in the brain and central nervous system.

Once severed by injury, axons in the spinal cord or optic nerve cannot regenerate and remain disconnected from their original target areas. As a result, affected patients suffer permanent functional impairment or disability such as paraplegia or blindness.

“Using a low dose of Taxol locally at the site of injury is crucial to leveraging the regeneration-promoting effects of Taxol”, says Dietmar Fischer, Professor of Experimental Neurology, Department of Neurology, Heinrich-Heine-Universität Düsseldorf, Germany.

These research results have most recently been published in the Journal of Neuroscience (February, 16, 2011 issue). Similar findings were obtained in the spinal cord of rats studied by an international research team led by the Max-Planck-Institut für Neurobiologie, Martinsried, Germany, and published a few days ago in the journal Science. These results demonstrate that Taxol can be used in various parts of the brain and spinal cord to successfully facilitate nerve fiber regeneration.

Used in the right dose, the drug simultaneously targets several mechanisms that normally prevent nerve growth: Taxol stabilizes specific structures (microtubules) in the growth cones of injured nerve fibers, resulting in substantially enhanced elongation. In addition, Taxol abolishes growth cone sensitivity to growth-blocking molecules which are normally in their vicinity after injury. Moreover, local administration of this cancer drug delays scar formation at the site of injury and suppresses the synthesis of growth-inhibiting molecules, thus substantially reducing this barrier to regeneration.

These current findings, generated independently and simultaneously by two teams of reseachers in different models – the spinal cord in one study and the rat optic nerve in the present study – are encouraging indeed, holding out the promise of continued therapeutic development as these results have been obtained for a clinically established human drug. “We are cautious about predicting the potential of Taxol or similar drugs for use in humans”, Prof. Fischer emphasizes, “although Taxol or similar drugs might be promising candidates for the treatment of injuries to the central nervous system, be it from stroke or trauma. While more studies are clearly needed, from the scientific standpoint we now have an additional strategy for the development of new treatments for repairing central nervous system injuries.”

Contact: Prof. Dr. Dietmar Fischer, Experimentelle Neurologie, Klinik für Neurologie, Universitätsklinikum Düsseldorf, Phone: +49 015253838060, Mobile: +49 (0)173 3299792, E-mail: dietmar.fischer@uni-duesseldorf.de; www.fischerlab.de

Susanne Dopheide | idw
Further information:
http://www.uniklinik-duesseldorf.de/neurologie

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>