Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Drug Linked to Quantum Dots Increases Drug Uptake, Reduces Inflammatory Response

02.11.2010
Researchers at the University at Buffalo have developed a novel technology using quantum dots that is expected to have major implications for research and treatment of tuberculosis, as well as other inflammatory lung diseases.

A paper appearing online in Nanomedicine: Nanotechnology, Biology and Medicine as an article-in-press describes specific delivery of a chemotherapeutic drug to specific cells in the lung, particularly the alveolar white cell, without causing acute inflammation.

Quantum dots are tiny semiconductor particles generally no larger than 10 nanometers that can be made to fluoresce in different colors depending on their size. Scientists are interested in quantum dots because they are a superb carrier and last much longer than conventional dyes used to tag molecules, which usually stop emitting light in seconds.

"The ability to target specific cells in the lung without exposing surrounding cells and tissue or distant organs to the detrimental effects of drugs is an exciting avenue to explore," says Krishnan V. Chakravarthy, PhD, a research fellow in the UB School of Medicine and Biomedical Sciences joint MD/PhD program and lead author on the paper.

"We have been able to prove this in both cultured cells and in animals," he continues. "The technology is still in its infancy, but being able to conduct these experiments in the whole animal makes it more promising as a clinical application. The long-term goal would be to do targeted drug delivery through aerosolized techniques, making it suitable for clinical use."

Researchers in UB's Institute of Lasers, Photonics and Biophotonics have made major advancements in the use of quantum dots, sometimes called artificial atoms, to build new devices for biological and environmental sensing.

In this research, quantum dots were linked with doxorubicin, an anti-cancer chemotherapy drug, to target specific lung cells, known as alveolar macrophages (aMØ) which play a critical role in the pathogenesis of various inflammatory lung injuries.

"The aMØ is the sentinel cell involved in directing the host innate and adaptive immune responses involved in infectious and non-infectious lung diseases such as COPD," notes Chakravarthy. "The aMØ's central role in response to environmental influences makes these cells an ideal candidate for targeted drug delivery to modulate the immune/inflammatory response."

To test the ability of linked quantum dot-doxorubicin (QD-DOX) to decrease lung inflammation, the researchers delivered QD-DOX or doxorubicin alone to rats and mice and assessed the damage to the lung. Doxorubicin, a frequently used cancer drug, is known to cause a variety of damaging immune responses in cancer patients.

Results showed that QD-DOX increased uptake of the drug compared with doxorubicin alone, and did not cause as significant a pro-inflammatory response as doxorubicin alone. The researchers also demonstrated that the drug is released from the QD-DOX formulation once it is delivered into the targeted cell and still retains its bioactivity.

"Based on these results, we believe that linking quantum dots with therapeutic drugs may have tremendous potential for diagnosis and treatment of lung injury compared to other nanoparticle formulations, and should be further developed for lung pharmacotherapy applications," says Chakravarthy.

Additional authors on the paper, all from UB, are Bruce A. Davidson, PhD; Jadwiga D. Helsinki; Hong Ding, PhD; Wing-Cheung Law; Ken-Tye Yong, PhD; Paras N. Prasad, PhD; and Paul Knight, MD, PhD.

The research is supported by grants from the National Institutes of Health to Chakravarthy, Knight and Prasad, and by a grant from John Oishei Foundation to Prasad.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.buffalo.edu/news/11939

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>