Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Drug Linked to Quantum Dots Increases Drug Uptake, Reduces Inflammatory Response

02.11.2010
Researchers at the University at Buffalo have developed a novel technology using quantum dots that is expected to have major implications for research and treatment of tuberculosis, as well as other inflammatory lung diseases.

A paper appearing online in Nanomedicine: Nanotechnology, Biology and Medicine as an article-in-press describes specific delivery of a chemotherapeutic drug to specific cells in the lung, particularly the alveolar white cell, without causing acute inflammation.

Quantum dots are tiny semiconductor particles generally no larger than 10 nanometers that can be made to fluoresce in different colors depending on their size. Scientists are interested in quantum dots because they are a superb carrier and last much longer than conventional dyes used to tag molecules, which usually stop emitting light in seconds.

"The ability to target specific cells in the lung without exposing surrounding cells and tissue or distant organs to the detrimental effects of drugs is an exciting avenue to explore," says Krishnan V. Chakravarthy, PhD, a research fellow in the UB School of Medicine and Biomedical Sciences joint MD/PhD program and lead author on the paper.

"We have been able to prove this in both cultured cells and in animals," he continues. "The technology is still in its infancy, but being able to conduct these experiments in the whole animal makes it more promising as a clinical application. The long-term goal would be to do targeted drug delivery through aerosolized techniques, making it suitable for clinical use."

Researchers in UB's Institute of Lasers, Photonics and Biophotonics have made major advancements in the use of quantum dots, sometimes called artificial atoms, to build new devices for biological and environmental sensing.

In this research, quantum dots were linked with doxorubicin, an anti-cancer chemotherapy drug, to target specific lung cells, known as alveolar macrophages (aMØ) which play a critical role in the pathogenesis of various inflammatory lung injuries.

"The aMØ is the sentinel cell involved in directing the host innate and adaptive immune responses involved in infectious and non-infectious lung diseases such as COPD," notes Chakravarthy. "The aMØ's central role in response to environmental influences makes these cells an ideal candidate for targeted drug delivery to modulate the immune/inflammatory response."

To test the ability of linked quantum dot-doxorubicin (QD-DOX) to decrease lung inflammation, the researchers delivered QD-DOX or doxorubicin alone to rats and mice and assessed the damage to the lung. Doxorubicin, a frequently used cancer drug, is known to cause a variety of damaging immune responses in cancer patients.

Results showed that QD-DOX increased uptake of the drug compared with doxorubicin alone, and did not cause as significant a pro-inflammatory response as doxorubicin alone. The researchers also demonstrated that the drug is released from the QD-DOX formulation once it is delivered into the targeted cell and still retains its bioactivity.

"Based on these results, we believe that linking quantum dots with therapeutic drugs may have tremendous potential for diagnosis and treatment of lung injury compared to other nanoparticle formulations, and should be further developed for lung pharmacotherapy applications," says Chakravarthy.

Additional authors on the paper, all from UB, are Bruce A. Davidson, PhD; Jadwiga D. Helsinki; Hong Ding, PhD; Wing-Cheung Law; Ken-Tye Yong, PhD; Paras N. Prasad, PhD; and Paul Knight, MD, PhD.

The research is supported by grants from the National Institutes of Health to Chakravarthy, Knight and Prasad, and by a grant from John Oishei Foundation to Prasad.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.buffalo.edu/news/11939

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>