Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer drug delivery system is effective and reversible

10.08.2009
For cancer drug developers, finding an agent that kills tumor cells is only part of the equation. The drug must also spare healthy cells, and – ideally – its effects will be reversible, to cut short any potentially dangerous side effects.

University of Illinois researchers report that they have assembled a new cancer drug delivery system that, in cell culture, achieves all of the above. The findings appear this month in the journal Angewandte Chemie.

The team began with the knowledge that small, membrane-bound compartments, called liposomes, are useful as drug-delivery vehicles. When linked to molecules that target receptors on cancer cells, liposomes can enter and dump their cancer-killing contents into those cells.

Scientists have spent more than a decade trying to direct liposomes to specific cancer cells, with limited success. A common approach involves attaching an antibody to the liposome membrane. Ideally the antibody will bind to a cancer cell receptor so that it can deliver the liposome – and the cancer drug – into the cell.

Developing such antibodies is costly and time-consuming, however, and the process of attaching them to liposomes is difficult to control. Antibodies spur an immune response, requiring extra steps to create a useable therapeutic agent, and the ability of antibody-conjugated liposomes to bind to cancer cells can be inconsistent.

Some small molecules, such folate, a vitamin, also work as cancer cell targeting agents, but those now in use are not as good as antibodies at binding to cancer cells.

To solve the cell-targeting problem, the U. of I. team turned its attention to small molecules called aptamers.

"Aptamers are short strands of DNA or RNA; they are highly efficient binders, and are very easy to make, label and manipulate," said Zehui Cao, a postdoctoral researcher in the laboratory of chemistry professor Yi Lu, who led the study. Materials science and engineering professors Gerard Wong and Jianjun Cheng were co-principal investigators on the study with Lu. Graduate students Rong Tong (who is co-first author on the paper with Cao), Abhijit Mishra and Weichen Xu also worked on the study.

Lu's laboratory specializes in isolating aptamers that bind to specific molecules and converting them into effective sensors and diagnostic agents. His team used an aptamer that binds to nucleolin receptors, which are found in abundance on certain breast cancer cells. The researchers then developed an effective method for attaching the aptamer to a liposome loaded with cisplatin, a drug that effectively kills cancer cells but has troublesome side effects when administered intravenously.

Tests in cells grown in the lab yielded promising results. Four days after they exposed the cells to the new drug-delivery system, 59.5 percent of the breast cancer cells had died, while less than 12 percent of breast cancer cells treated with cisplatin alone had died.

"By labeling a liposome that contains cisplatin with a cancer cell-specific aptamer, we have shown delivery of the drugs to cancer cells without significant damage to regular cells," Lu said, "making it possible to maximize the drug potency while minimizing its side effects."

This approach "integrates the advantages of small molecules and antibodies," said Cheng, who helped pioneer the use of aptamers as targeting molecules for drug delivery. "This is the first study to integrate the aptamers and the liposome."

Another advantage of using aptamers as targeting agents is that they are easily disabled. They readily bind to complementary DNA, which prevents them from interacting with cell receptors.

The new approach will be useful for many applications, Wong said. "What we're really doing here is coming up with a general toolbox to deal with a broad range of cancers."

"You can change aptamers to target a different type of cancer, you can change the therapeutic molecules to fight cancer or other diseases, and you can reverse the dose," Cheng said. "That's a lot of tools in the toolbox. It has great potential."

The collaboration between materials scientists and chemists was made possible by administrative structures at the U. of I. that foster such partnerships, Wong said. The work was supported by a National Science Foundation (NSF) Nanoscale Science and Engineering Center grant, the NSF Career Program, and the Siteman Center for Cancer Nanotechnology Excellence (SCCNE, Washington University) – Center for Nanoscale Science and Technology (CNST, UIUC).

The paper: "Reversible Cell-Specific Drug Delivery With Aptamer-Functionalized Liposomes," appeared July 21, 2009, in Angewandte Chemie. The authors: Zehui Cao, Rong Tong, Abhijit Mishra, Weichen Xu, Gerard C L Wong, Jianjun Cheng, and Yi Lu, of the University of Illinois. Full text of the article is available online: http://highwire.stanford.edu/cgi/medline/pmid;19623590.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>