Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why cancer cells just won't die

10.12.2009
Robarts researcher identifies protein which regulates cell suicide

When cells experience DNA damage, they'll try to repair it. But if that fails, the damaged cells are supposed to self-destruct, a process called apoptosis. A cancer researcher at Robarts Research Institute at The University of Western Ontario has identified a protein that regulates apoptosis, a new discovery which has implications for both the diagnosis and treatment of cancer. Caroline Schild-Poulter's findings are now published online in the journal Molecular Cancer Research.

"The protein we've identified, RanBPM, is directly involved in activating apoptosis," explains Schild-Poulter who is also an assistant professor in the Department of Biochemistry at Western's Schulich School of Medicine & Dentistry. "One of the hallmarks of cancer is that the cells don't initiate apoptosis despite having defects in their genetic material. In other words the damaged cells do not commit suicide, and this develops into cancer. Failure to activate apoptosis also makes it difficult to cure cancer. You cannot kill these cells by causing DNA damage to them using chemotherapy or radiation, because these cells resist dying."

While more research is needed to fully understand how this protein functions, Schild-Poulter believes RanBPM could be targeted to re-activate apoptosis, killing cancer cells. The protein may also be a marker used to predict whether a tumour will go on to become malignant.

Schild-Poulter holds the position of "Fuller Scientist" at Robarts Research. Her research is funded through a donation from Marilynne Fuller, whose husband Robert died of cancer in 2002.

Video of Schild-Poulter explaining her research is available.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: DNA DNA damage Radiation RanBPM chemotherapy genetic material

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>