Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why cancer cells just won't die

10.12.2009
Robarts researcher identifies protein which regulates cell suicide

When cells experience DNA damage, they'll try to repair it. But if that fails, the damaged cells are supposed to self-destruct, a process called apoptosis. A cancer researcher at Robarts Research Institute at The University of Western Ontario has identified a protein that regulates apoptosis, a new discovery which has implications for both the diagnosis and treatment of cancer. Caroline Schild-Poulter's findings are now published online in the journal Molecular Cancer Research.

"The protein we've identified, RanBPM, is directly involved in activating apoptosis," explains Schild-Poulter who is also an assistant professor in the Department of Biochemistry at Western's Schulich School of Medicine & Dentistry. "One of the hallmarks of cancer is that the cells don't initiate apoptosis despite having defects in their genetic material. In other words the damaged cells do not commit suicide, and this develops into cancer. Failure to activate apoptosis also makes it difficult to cure cancer. You cannot kill these cells by causing DNA damage to them using chemotherapy or radiation, because these cells resist dying."

While more research is needed to fully understand how this protein functions, Schild-Poulter believes RanBPM could be targeted to re-activate apoptosis, killing cancer cells. The protein may also be a marker used to predict whether a tumour will go on to become malignant.

Schild-Poulter holds the position of "Fuller Scientist" at Robarts Research. Her research is funded through a donation from Marilynne Fuller, whose husband Robert died of cancer in 2002.

Video of Schild-Poulter explaining her research is available.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: DNA DNA damage Radiation RanBPM chemotherapy genetic material

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>