Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells and stem cells share same origin

19.07.2011
Scientists at the Keck School of Medicine of USC grow brain cells from skin

Oncogenes are generally thought to be genes that, when mutated, change healthy cells into cancerous tumor cells. Scientists at the Keck School of Medicine of the University of Southern California (USC) have proven that those genes also can change normal cells into stem-like cells, paving the way to a safer and more practical approach to treating diseases like multiple sclerosis and cancer with stem cell therapy.

"The reality may be more complicated than people think," said Jiang F. Zhong, Ph.D., assistant professor of pathology at the Keck School. "What is a stem cell gene? What is a cancer gene? It may be the same thing."

Zhong and colleagues at the Children's Hospital of Orange County (CHOC) in California and Good Samaritan Hospital Medical Center in New York successfully converted human skin cells into brain cells by suppressing the expression of p53, a protein encoded by a widely studied oncogene. This suggests that p53 mutation helps determine cell fate — good or bad — rather than only the outcome of cancer.

The study is slated to appear in the online edition of Proceedings of the National Academy of Sciences, a peer-reviewed scientific journal, the week of July 18, 2011.

"When you turn off p53, people think the cell becomes cancerous because we tend to focus on the bad thing," Zhong said. "Actually, the cell becomes more plastic and could do good things, too. Let's say the cell is like a person who loses his job (the restriction of p53). He could become a criminal or he could find another job and have a positive effect on society. What pushes him one way or the other, we don't know because the environment is very complicated."

Stem cells can divide and differentiate into different types of cells in the body. In humans, embryonic stem cells differentiate into three families, or germ layers, of cells. The reasons why and how certain stem cells differentiate into particular layers are not clearly understood. However, from those layers, tissues and organs develop. The endoderm, for example, leads to formation of the stomach, colon and lungs, while the mesoderm forms blood, bone and heart tissue. In its study, Zhong's team examined human skin cells, which are related to brain and neural cells from the ectoderm.

When p53 was suppressed, the skin cells developed into cells that looked exactly like human embryonic stem cells. But, unlike other man-made stem cells that are "pluripotent" and can become any other cells in the body, these cells differentiated only into cells from the same germ layer, ectoderm.

"IPSCs [induced pluripotent stem cells] can turn into anything, so they are hard to control," Zhong said. "Our cells are staying within the ectoderm lineage."

Zhong said he expects that suppressing other oncogenes in other families of cells would have the same effect, which could have critical significance for stem cell therapy. Future research should focus on determining which genes to manipulate, Zhong said.

This study was supported by the CHOC Children's Foundation, CHOC Neuroscience Institute, Austin Ford Tribute Fund, W. M. Keck Foundation, National Institutes of Health and National Science Foundation.

Alison Trinidad | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>