Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How cancer cells lose their (circadian) rhythm

Immortality and uncontrolled cell division are the fundamental differences between cancer cells and normal cells.
A widely held explanation for these differences is that the biological clocks in cancer cells are damaged and can’t regulate cell division in the fashion that they do in normal cells.

This assumption is challenged by the results of the first experiment that has continuously monitored variations in the rate of cell division of cultured mammalian cells for extended periods. The results are reported this week in a paper published in the online Early Edition of the Proceedings of the National Academy of Sciences.

The experiment discovered that one line of immortal cells have functioning biological clocks but their internal clocks have no effect on the rate at which they divide and grow. (Immortal cells have the same basic properties as cancer cells but are created in the laboratory where they are used for a wide variety of purposes.)

“The current assumption has been that the biological clocks in cancer cells have been disabled,” says Julie Pendergast, a research associate who participated in the study. “We determined that the immortalized cells in our experiment had functioning biological clocks but these clocks don’t control the process of cell division. That is the paradigm-shifting aspect of our study.”

If confirmed by follow-up studies, this insight could aid in the development of new cancer therapies.

“This strengthens the possibility that the biological clock pathway could be an effective target for anti-cancer drugs,” says Shin Yamazaki, the research professor of biological sciences at Vanderbilt who directed the project. “For example, if a drug could be found that restores the control of the biological clock over cancer cell division, it could reduce tumor growth.”

Biologists have observed that cell division in normal cells in species ranging from unicellular organisms to humans peaks at specific times of the day and consider this as indirect evidence that the process is regulated by their internal biological clocks. Cells in the human mouth, for example, tend to divide in the evening, just before nightfall.

“There is a general evolutionary explanation for this,” says Pendergast. “Ultraviolet light is one of the primary causes of mutations. Cells are particularly vulnerable to mutations during cell division. So organisms with cells that divide at night have a selective advantage.”

In addition, there has been a considerable amount of indirect evidence that mitosis (division) in cancer cells is not under 24-hour control. For example, “experiments have found that cells turn cancerous when certain circadian clock genes have been knocked out,” says Yamazaki. The results of other experiments that have periodically sampled cancer cell division rates also support this possibility.

Yamazaki designed and built a special system to monitor cell division in real time. He and his colleagues designed a special “reporter” molecule incorporating a gene that produces an enzyme that makes green light. They figured out how to insert this reporter into a cell’s genome so that it produces the luminescent enzyme when the cell divides. This allows them to use a camera to continuously measure variations in the rate of cell division over long periods of time.

For the current experiment, the researchers inserted their special reporter into immortalized rat fibroblasts formed from connective tissue taken from rats. They selected this cell line because it was known to have working circadian clocks.

They have obtained consistent results in preliminary studies of lung cancer cells.

The other participants in the study were Professor Yoshihiro Ohmiya at the Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan and post-doctoral researcher Mijung Yeom, now at the Acupuncture and Meridian Science Research Center, Kyung Hee University in Seoul, South Korea.

The research was supported by funds from the National Institutes of Health, Research Foundation for Opto-Science and Technology, the NEDO Project and Takeda Science Foundation.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at

David F. Salisbury | Vanderbilt University
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>