Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer cells lose their (circadian) rhythm

11.05.2010
Immortality and uncontrolled cell division are the fundamental differences between cancer cells and normal cells.
A widely held explanation for these differences is that the biological clocks in cancer cells are damaged and can’t regulate cell division in the fashion that they do in normal cells.

This assumption is challenged by the results of the first experiment that has continuously monitored variations in the rate of cell division of cultured mammalian cells for extended periods. The results are reported this week in a paper published in the online Early Edition of the Proceedings of the National Academy of Sciences.

The experiment discovered that one line of immortal cells have functioning biological clocks but their internal clocks have no effect on the rate at which they divide and grow. (Immortal cells have the same basic properties as cancer cells but are created in the laboratory where they are used for a wide variety of purposes.)

“The current assumption has been that the biological clocks in cancer cells have been disabled,” says Julie Pendergast, a research associate who participated in the study. “We determined that the immortalized cells in our experiment had functioning biological clocks but these clocks don’t control the process of cell division. That is the paradigm-shifting aspect of our study.”

If confirmed by follow-up studies, this insight could aid in the development of new cancer therapies.

“This strengthens the possibility that the biological clock pathway could be an effective target for anti-cancer drugs,” says Shin Yamazaki, the research professor of biological sciences at Vanderbilt who directed the project. “For example, if a drug could be found that restores the control of the biological clock over cancer cell division, it could reduce tumor growth.”

Biologists have observed that cell division in normal cells in species ranging from unicellular organisms to humans peaks at specific times of the day and consider this as indirect evidence that the process is regulated by their internal biological clocks. Cells in the human mouth, for example, tend to divide in the evening, just before nightfall.

“There is a general evolutionary explanation for this,” says Pendergast. “Ultraviolet light is one of the primary causes of mutations. Cells are particularly vulnerable to mutations during cell division. So organisms with cells that divide at night have a selective advantage.”

In addition, there has been a considerable amount of indirect evidence that mitosis (division) in cancer cells is not under 24-hour control. For example, “experiments have found that cells turn cancerous when certain circadian clock genes have been knocked out,” says Yamazaki. The results of other experiments that have periodically sampled cancer cell division rates also support this possibility.

Yamazaki designed and built a special system to monitor cell division in real time. He and his colleagues designed a special “reporter” molecule incorporating a gene that produces an enzyme that makes green light. They figured out how to insert this reporter into a cell’s genome so that it produces the luminescent enzyme when the cell divides. This allows them to use a camera to continuously measure variations in the rate of cell division over long periods of time.

For the current experiment, the researchers inserted their special reporter into immortalized rat fibroblasts formed from connective tissue taken from rats. They selected this cell line because it was known to have working circadian clocks.

They have obtained consistent results in preliminary studies of lung cancer cells.

The other participants in the study were Professor Yoshihiro Ohmiya at the Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan and post-doctoral researcher Mijung Yeom, now at the Acupuncture and Meridian Science Research Center, Kyung Hee University in Seoul, South Korea.

The research was supported by funds from the National Institutes of Health, Research Foundation for Opto-Science and Technology, the NEDO Project and Takeda Science Foundation.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu
http://www.vanderbilt.edu/exploration/stories/cancerrhythm.html

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>