Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer cells lose their (circadian) rhythm

11.05.2010
Immortality and uncontrolled cell division are the fundamental differences between cancer cells and normal cells.
A widely held explanation for these differences is that the biological clocks in cancer cells are damaged and can’t regulate cell division in the fashion that they do in normal cells.

This assumption is challenged by the results of the first experiment that has continuously monitored variations in the rate of cell division of cultured mammalian cells for extended periods. The results are reported this week in a paper published in the online Early Edition of the Proceedings of the National Academy of Sciences.

The experiment discovered that one line of immortal cells have functioning biological clocks but their internal clocks have no effect on the rate at which they divide and grow. (Immortal cells have the same basic properties as cancer cells but are created in the laboratory where they are used for a wide variety of purposes.)

“The current assumption has been that the biological clocks in cancer cells have been disabled,” says Julie Pendergast, a research associate who participated in the study. “We determined that the immortalized cells in our experiment had functioning biological clocks but these clocks don’t control the process of cell division. That is the paradigm-shifting aspect of our study.”

If confirmed by follow-up studies, this insight could aid in the development of new cancer therapies.

“This strengthens the possibility that the biological clock pathway could be an effective target for anti-cancer drugs,” says Shin Yamazaki, the research professor of biological sciences at Vanderbilt who directed the project. “For example, if a drug could be found that restores the control of the biological clock over cancer cell division, it could reduce tumor growth.”

Biologists have observed that cell division in normal cells in species ranging from unicellular organisms to humans peaks at specific times of the day and consider this as indirect evidence that the process is regulated by their internal biological clocks. Cells in the human mouth, for example, tend to divide in the evening, just before nightfall.

“There is a general evolutionary explanation for this,” says Pendergast. “Ultraviolet light is one of the primary causes of mutations. Cells are particularly vulnerable to mutations during cell division. So organisms with cells that divide at night have a selective advantage.”

In addition, there has been a considerable amount of indirect evidence that mitosis (division) in cancer cells is not under 24-hour control. For example, “experiments have found that cells turn cancerous when certain circadian clock genes have been knocked out,” says Yamazaki. The results of other experiments that have periodically sampled cancer cell division rates also support this possibility.

Yamazaki designed and built a special system to monitor cell division in real time. He and his colleagues designed a special “reporter” molecule incorporating a gene that produces an enzyme that makes green light. They figured out how to insert this reporter into a cell’s genome so that it produces the luminescent enzyme when the cell divides. This allows them to use a camera to continuously measure variations in the rate of cell division over long periods of time.

For the current experiment, the researchers inserted their special reporter into immortalized rat fibroblasts formed from connective tissue taken from rats. They selected this cell line because it was known to have working circadian clocks.

They have obtained consistent results in preliminary studies of lung cancer cells.

The other participants in the study were Professor Yoshihiro Ohmiya at the Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan and post-doctoral researcher Mijung Yeom, now at the Acupuncture and Meridian Science Research Center, Kyung Hee University in Seoul, South Korea.

The research was supported by funds from the National Institutes of Health, Research Foundation for Opto-Science and Technology, the NEDO Project and Takeda Science Foundation.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu
http://www.vanderbilt.edu/exploration/stories/cancerrhythm.html

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>