Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Cells Accelerate Aging and Inflammation in the Body to Drive Tumor Growth

30.05.2011
Researchers at the Kimmel Cancer Center at Jefferson have shed new light on the longstanding conundrum about what makes a tumor grow—and how to make it stop. Interestingly, cancer cells accelerate the aging of nearby connective tissue cells to cause inflammation, which ultimately provides “fuel” for the tumor to grow and even metastasize.

This revealing symbiotic process, which is similar to how muscle and brain cells communicate with the body, could prove useful for developing new drugs to prevent and treat cancers. In this simple model, our bodies provide nourishment for the cancer cells, via chronic inflammation.

“People think that inflammation drives cancer, but they never understood the mechanism,” said Michael P. Lisanti, M.D., Ph.D., Professor and Chair of Stem Cell Biology & Regenerative Medicine at Jefferson Medical College of Thomas Jefferson University and a member of the Kimmel Cancer Center. “What we found is that cancer cells are accelerating aging and inflammation, which is making high-energy nutrients to feed cancer cells.”

In normal aging, DNA is damaged and the body begins to deteriorate because of oxidative stress. “We are all slowly rusting, like the Tin-man in the Wizard of Oz,” Dr. Lisanti said. “And there is a very similar process going on in the tumor’s local environment.” Interestingly, cancer cells induce “oxidative stress,” the rusting process, in normal connective tissue, in order to extract vital nutrients.

Dr. Lisanti and his team previously discovered that cancer cells induce this type of stress response (autophagy) in nearby cells, to feed themselves and grow. However, the mechanism by which the cancer cells induce this stress and, more importantly, the relationship between the connective tissue and how this “energy” is transferred was unclear.

“Nobody fully understands the link between aging and cancer,” said Dr. Lisanti, who used pre-clinical models, as well as tumors from breast cancer patients, to study these mechanisms. “What we see now is that as you age, your whole body becomes more sensitive to this parasitic cancer mechanism, and the cancer cells selectively accelerate the aging process via inflammation in the connective tissue.”

This helps explain why cancers exist in people of all ages, but susceptibility increases as you age. If aggressive enough, cancer cells can induce accelerated aging in the tumor, regardless of age, to speed up the process.

The researchers’ findings were published online June 1st in the journal Cell Cycle in three separate papers.

One paper analyzes the gene profiles of the laser-captured connective tissue, associated with lethal tumors, in human breast cancer patients. In this paper, lethal cancers show the same gene expression pattern associated with normal aging, as well as Alzheimer’s disease. In fact, these aging and Alzheimer’s disease signatures can identify which breast cancer patients will undergo metastasis. The researchers find that oxidative stress is a common “driver” for both dementia and cancer cell spreading.

In another study, the researchers explain that cancer cells initiate a “lactate shuttle” to move lactate—the “food”—from the connective tissue to the cancer cells. There’s a transporter that is “spilling” lactate from the connective tissue and a transporter that then “gobbles” it up in the cancer cells.”

The implication is that the fibroblasts in the connective tissue are feeding cancer cells directly via pumps, called MCT1 and MCT4, or mono-carboxylate transporters. The researchers see that lactate is like “candy” for cancer cells. And cancer cells are addicted to this supply of “candy.”

“We’ve essentially shown for the first time that there is lactate shuttle in human tumors,” said Dr. Lisanti. “It was first discovered nearly 100 years ago in muscles, 15 years ago in the brain, and now we’ve shown this shuttle also exists in human tumors.”

It’s all the same mechanism, where one cell type literally “feeds” the other. The cancer cells are the “Queen Bees,” and the connective tissue cells are the “Worker Bees.” In this analogy, the “Queen Bees” use aging and inflammation as the signal to tell the “Worker Bees” to make more food.

Researchers also identified MCT4 as a biomarker for oxidative stress in cancer-associated fibroblasts, and inhibiting it could be a powerful new anti-cancer therapy.

“If lethal cancer is a disease of “accelerated aging” in the tumor’s connective tissue, then cancer patients may benefit from therapy with strong antioxidants and anti-inflammatory drugs,” said Dr. Lisanti. “Antioxidant therapy will “cut off the fuel supply” for cancer cells.” Antioxidants also have a natural anti-inflammatory action.

References:
http://www.landesbioscience.com/journals/cc/article/15674/
http://www.landesbioscience.com/journals/cc/article/15659/
http://www.landesbioscience.com/journals/cc/article/15675/
Disclosure: Dr. Michael Lisanti serves as on the editorial board of Cell Cycle. No person at Thomas Jefferson University was involved in the peer review process or final disposition for this article.

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>