Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cell collaborators smooth the way for cancer cells to metastasize

14.12.2015

At ASCB 2015: Cancer cell collaborators unmasked

At ASCB 2015, Vanderbilt researchers show how metastasizing tumors use non-cancerous fibroblasts to make a migration highway through surrounding extracellular matrix.


Red labeled JHU12 head and neck carcinoma cells are migrating on CAF-derived extracellular matrix (green). Images were taken every 10 minutes for 3 hours using a confocal microscope.

Credit: Begum Erdogan & Donna Webb, Vanderbilt University

To get moving, metastasizing cancer needs to enlist non-cancerous collaborators. Suspicions about where these secret cancer allies might be lurking have long been directed at the fibroblasts, the cells that secrete and organize the extracellular matrix (ECM), the ground on which surrounding cells can get a grip. Increasing evidence suggests that fibroblasts near growing tumors are actively assisting cancer cells in spreading locally and metastasizing elsewhere.

But exactly how these cancer-associated fibroblasts (CAFs) provide aid to the cancer enemy was not known until a recent discovery by Begum Erdogan and colleagues in Donna Webb's lab at Vanderbilt University--CAFs clear a highway through the ECM for migrating cancer cells. The researchers will present their work at ASCB 2015 in San Diego on Sunday, December 13 and Tuesday, December 15.

The roadway that CAFs arrange is made of parallel fibers of fibronectin (Fn), a major protein in the ECM mix secreted by all fibroblasts. The Vanderbilt researchers observed CAFs rearranging Fn into parallel bundles instead of the dense mesh that normal tissue fibroblasts (NAFs) make. Taking cancer cells grown from prostate as well as head and neck tumors, the researchers plated them on ECM from CAFs and NAFs. The cancer cells on the CAF matrix were better at moving in a single direction.

But why? CAFs rearrange the matrix into a road because they get a better grip on Fn fibers, the researchers discovered. Using traction force microscopy, they were able to measure the difference. CAFs were stronger than NAFs because they were better at delivering force from the motor protein, myosin II, through connectors called integrins to Fn fibers.

CAFs had higher levels of a Fn-binding integrin plus a switched-on GTPase called Rac, which is critical to cell movement. Inhibiting myosin-II activity with a drug deprived CAFs of their super traction powers and the ECM reverted to its normal disorder. These results solve a longstanding puzzle about cancer metastasis and point to the matrix as a possible target for drugs to stop cancer in its tracks.

###

Cancer-associated fibroblasts promote directional migration of cancer cells via parallel organization of the fibronectin matrix
B. Erdogan1, M. Ao1, B.M. Brewer2, O.E. Franco3,4,5, S.W. Hayward3,4,5, D. Li2, D.J. Webb1,3
1Biological Sciences, Vanderbilt University, Nashville, TN, 2Mechanical Engineering, Vanderbilt University, Nashville, TN, 3Cancer Biology, Vanderbilt University, Nashville, TN, 4Urologic Surgery, Vanderbilt University, Nashville, TN, 5Surgery, NorthShore University HealthSystem, Evanston, IL

Contact author: Begum Erdogan
begum.erdogan@Vanderbilt.Edu
Lab (615) 343-9031

At ASCB 2015
Author presents:
Microsymposium 01: Cell Motility & Migration
Sunday, December 13
12:05-12:10 pm
Microsymposia Room 1

Integrins & Cell-ECM Interactions
Tuesday, December 15
1:30-3:00 pm
P2225
Board Number: B1356
ASCB Learning Center

For ASCB, contact: John Fleischman
jfleischman@ascb.org

Video available: "JHUcells on CAF-CDM" https://vimeo.com/147615483
Caption for video: Red labeled JHU12 head and neck carcinoma cells are migrating on CAF-derived extracellular matrix (green). Images were taken every 10 minutes for 3 hours using a confocal microscope.

John Fleischman | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>