Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour

24.06.2014

One of the deadliest forms of paediatric brain tumour, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes.

The finding, by scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, and Sanford-Burnham Medical Research Institute in San Diego, USA, is published online today in Nature.

To date, the only gene known to play an important role in Group 3 medulloblastoma was a gene called MYC, but that gene alone couldn’t explain some of the unique characteristics of this particular type of medulloblastoma, which has a higher metastasis rate and overall poorer prognosis than other types of this childhood brain tumour.

To tackle the question, Jan Korbel’s group at EMBL and collaborators at DKFZ tried to identify new genes involved, taking advantage of the large number of medulloblastoma genome sequences now known. “We were surprised to see that in addition to MYC there are two other major drivers of Group 3 medulloblastoma – two sister genes called GFI1B and GFI1,” says Korbel.

“Our findings could be relevant for research on other cancers, as we discovered that those genes had been activated in a way that cancer researchers don’t usually look for in solid tumours.” Rather than take the usual approach of looking for changes in individual genes, the team focused on large-scale rearrangements of the stretches of DNA that lie between genes. 

They found that the DNA of different patients showed evidence of different rearrangements: duplications, deletions, inversions, and even complex alterations involving many ‘DNA-shuffling’ events. This wide array of genetic changes had one effect in common: they placed GFI1B close to highly active enhancers – stretches of DNA that can dramatically increase gene activity. So large-scale DNA changes relocate GFI1B, activating this gene in cells where it would normally be switched off.

And that, the researchers surmise, is what drives the tumour to form. “Nobody has seen such a process in solid cancers before,” says Paul Northcott from DKFZ, “although it shares similarities with a phenomenon implicated in leukaemias, which has been known since the 80s.”

GFI1B wasn’t affected in all cases studied, but in many patients where it wasn’t, a related gene with a similar role, GFI1, was. GFI1B and GFI1 sit on different chromosomes, and interestingly, the DNA rearrangements affecting GFI1 put it next to enhancers sitting on yet other chromosomes. But the overall result was identical: the gene was activated, and appeared to drive tumour formation.

To confirm the role of GFI1B and GFI1 in causing medulloblastoma, the Heidelberg researchers turned to the expertise of Robert Wechsler-Reya’s group at Sanford-Burnham. Wechsler-Reya’s lab genetically modified neural stem cells to have either GFI1B or GFI1 turned on, together with MYC.

When they inserted those modified cells into the brains of healthy mice, the rodents developed aggressive, metastasising brain tumours that closely resemble Group 3 medulloblastoma in humans. These mice are the first to truly mimic the genetics of the human version of Group 3 medulloblastoma, and researchers can now use them to probe further.

The mice could, for instance, be used to test potential treatments suggested by these findings. One interesting option to explore, the scientists say, is that highly active enhancers – like the ones they found were involved in this tumour – can be vulnerable to an existing class of drugs called bromodomain inhibitors.

And, since neither GFI1B nor GFI1 is normally active in the brain, the study points to possible routes for diagnosing this brain tumour, too. But the mice also raised another question the scientists are still untangling. For the rodents to develop medulloblastoma-like tumours, activating GFI1 or GFI1B was not enough; MYC also had to be switched on.

In human patients, however, scientists have found a statistical link between MYC and GFI1, but not between MYC and GFI1B, so the team is now following up on this partial surprise. “What we’re learning from this study is that clearly one has to think outside the box when trying to understand cancer genomes,” Korbel concludes.

Published online in Nature on 22 June 2014. DOI: 10.1038/nature13379.

For more information please visit: www.embl.org/press/2014/140622_Heidelberg.

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves EMBL Press Officer and Deputy Head of Communications Meyerhofstr. 1, 69117 Heidelberg, Germany Tel.: +49 (0)6221 387 8263 Fax: +49 (0)6221 387 8525 sonia.furtado@embl.de www.embl.org Keep up-to-date with EMBL Research News at: www.embl.org/news

Sonia Furtado Neves | EMBL Research News

Further reports about: Biology Cancer DKFZ DNA EMBL Laboratory Molecular chromosomes genes shuffling tumour tumours

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>