Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour

24.06.2014

One of the deadliest forms of paediatric brain tumour, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes.

The finding, by scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, and Sanford-Burnham Medical Research Institute in San Diego, USA, is published online today in Nature.

To date, the only gene known to play an important role in Group 3 medulloblastoma was a gene called MYC, but that gene alone couldn’t explain some of the unique characteristics of this particular type of medulloblastoma, which has a higher metastasis rate and overall poorer prognosis than other types of this childhood brain tumour.

To tackle the question, Jan Korbel’s group at EMBL and collaborators at DKFZ tried to identify new genes involved, taking advantage of the large number of medulloblastoma genome sequences now known. “We were surprised to see that in addition to MYC there are two other major drivers of Group 3 medulloblastoma – two sister genes called GFI1B and GFI1,” says Korbel.

“Our findings could be relevant for research on other cancers, as we discovered that those genes had been activated in a way that cancer researchers don’t usually look for in solid tumours.” Rather than take the usual approach of looking for changes in individual genes, the team focused on large-scale rearrangements of the stretches of DNA that lie between genes. 

They found that the DNA of different patients showed evidence of different rearrangements: duplications, deletions, inversions, and even complex alterations involving many ‘DNA-shuffling’ events. This wide array of genetic changes had one effect in common: they placed GFI1B close to highly active enhancers – stretches of DNA that can dramatically increase gene activity. So large-scale DNA changes relocate GFI1B, activating this gene in cells where it would normally be switched off.

And that, the researchers surmise, is what drives the tumour to form. “Nobody has seen such a process in solid cancers before,” says Paul Northcott from DKFZ, “although it shares similarities with a phenomenon implicated in leukaemias, which has been known since the 80s.”

GFI1B wasn’t affected in all cases studied, but in many patients where it wasn’t, a related gene with a similar role, GFI1, was. GFI1B and GFI1 sit on different chromosomes, and interestingly, the DNA rearrangements affecting GFI1 put it next to enhancers sitting on yet other chromosomes. But the overall result was identical: the gene was activated, and appeared to drive tumour formation.

To confirm the role of GFI1B and GFI1 in causing medulloblastoma, the Heidelberg researchers turned to the expertise of Robert Wechsler-Reya’s group at Sanford-Burnham. Wechsler-Reya’s lab genetically modified neural stem cells to have either GFI1B or GFI1 turned on, together with MYC.

When they inserted those modified cells into the brains of healthy mice, the rodents developed aggressive, metastasising brain tumours that closely resemble Group 3 medulloblastoma in humans. These mice are the first to truly mimic the genetics of the human version of Group 3 medulloblastoma, and researchers can now use them to probe further.

The mice could, for instance, be used to test potential treatments suggested by these findings. One interesting option to explore, the scientists say, is that highly active enhancers – like the ones they found were involved in this tumour – can be vulnerable to an existing class of drugs called bromodomain inhibitors.

And, since neither GFI1B nor GFI1 is normally active in the brain, the study points to possible routes for diagnosing this brain tumour, too. But the mice also raised another question the scientists are still untangling. For the rodents to develop medulloblastoma-like tumours, activating GFI1 or GFI1B was not enough; MYC also had to be switched on.

In human patients, however, scientists have found a statistical link between MYC and GFI1, but not between MYC and GFI1B, so the team is now following up on this partial surprise. “What we’re learning from this study is that clearly one has to think outside the box when trying to understand cancer genomes,” Korbel concludes.

Published online in Nature on 22 June 2014. DOI: 10.1038/nature13379.

For more information please visit: www.embl.org/press/2014/140622_Heidelberg.

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves EMBL Press Officer and Deputy Head of Communications Meyerhofstr. 1, 69117 Heidelberg, Germany Tel.: +49 (0)6221 387 8263 Fax: +49 (0)6221 387 8525 sonia.furtado@embl.de www.embl.org Keep up-to-date with EMBL Research News at: www.embl.org/news

Sonia Furtado Neves | EMBL Research News

Further reports about: Biology Cancer DKFZ DNA EMBL Laboratory Molecular chromosomes genes shuffling tumour tumours

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>