Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer, bioelectrical signals and the microbiome connected

28.05.2014

Tufts biologists show bioelectrical signals control tumors arising from cancer-causing genes; fatty acid involved in process

Developmental biologists at Tufts University, using a tadpole model, have shown that bioelectrical signals from distant cells control the incidence of tumors arising from cancer-causing genes and that this process is impacted by levels of a common fatty acid produced by bacteria found in the tadpole and also in humans.

"Genetic information is often not enough to determine whether a cell will become cancerous; you also have to take into account the physiology of the cell and the bioelectrical signals it receives from other tissues. This has huge implications for diagnostic technology as well as our basic understanding of the role of genetics and physiology in oncology," said Michael Levin, Ph.D., Vannevar Bush Professor of Biology and corresponding author of the paper in the journal Oncotarget that describes the research. The paper appeared online in advance of print on May 1.

"These data also suggest a number of ways we might prevent, detect and treat cancer," Levin added, "for example, by using ion channel drugs – "electroceuticals" -- to target the bioelectric state of distant sites in the body. Ion channel agents, such as anti-epileptic drugs, are already approved for human use. "

... more about:
»Cancer »Oncotarget »acid »butyrate »drugs »levels »oncogenes »tadpoles »tumors

Levin and Brook T. Chernet, Ph.D., injected Xenopus laevis tadpoles with oncogenes associated with many human cancers. The oncogenes caused tumor-like structures to form in these locations. Levin and Chernet's study showed that the incidence of tumor formation could be significantly reduced through misexpression of hyperpolarizing ion channels, which control current flow across a cell membrane, even when these electrical signals originated far from the oncogene-expressing cells. "These distant bioelectric signals suppressed tumor growth, despite the cells' continued high levels of oncogene protein," said Chernet, a former doctoral student in Levin's lab.

Further investigation revealed that the tumor-suppressing effects of hyperpolarization were regulated by a mechanism involving the short chain fatty acid butyrate and its target, the enzyme histone deacetylase. In humans, butyrate is produced in the colon by natural bacterial fermentation of carbohydrates, and butyrate has been shown to protect against colorectal cancer. To confirm that bacterial butyrate was also involved in regulating distant tumor formation in tadpoles, the researchers administered antibiotics; they found that the drugs indeed reduced butyrate production and thereby stopped membrane-voltage-based tumor suppression.

Programming Bacteria to Prevent Tumors

"Our research uncovers a promising connection between the microbiome and cancer that is controlled by alterations in bioelectric signaling and also opens up exciting possibilities for biomedicine. Imagine bacteria that are metabolically programmed to produce butyrate levels appropriate to prevent tumors," said Levin.

The distance over which carcinogenesis can be predicted and controlled has been addressed in a handful of earlier studies, including work by Levin and colleagues. Levin and Chernet have shown that aberrant bioelectrical properties of tissue revealed the location where tumors were likely to form and that melanoma-like growth could be triggered by bioelectrical signaling of instructor cells far from the melanocytes. The two biologists say that more research is needed to determine whether such signaling occurs in mammalian cancer models and over what distance.

The Tufts biologists are also intrigued by the question of whether cancers emit bioelectrical information that could be detectable at a distance from the tumors themselves. "It is tempting to speculate that the long-range signaling connections are bi-directional," says Levin.

###

The research was supported by funding from the G. Harold and Leila Y. Mathers Charitable Foundation and DARPA (subaward W911NF-09-1-0125).

Chernet, B., & Levin, M. (2014). Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 5. This work was published May 1, 2014, online in advance of print.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoy a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | Eurek Alert!
Further information:
http://www.tufts.edu

Further reports about: Cancer Oncotarget acid butyrate drugs levels oncogenes tadpoles tumors

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>