Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer, bioelectrical signals and the microbiome connected

28.05.2014

Tufts biologists show bioelectrical signals control tumors arising from cancer-causing genes; fatty acid involved in process

Developmental biologists at Tufts University, using a tadpole model, have shown that bioelectrical signals from distant cells control the incidence of tumors arising from cancer-causing genes and that this process is impacted by levels of a common fatty acid produced by bacteria found in the tadpole and also in humans.

"Genetic information is often not enough to determine whether a cell will become cancerous; you also have to take into account the physiology of the cell and the bioelectrical signals it receives from other tissues. This has huge implications for diagnostic technology as well as our basic understanding of the role of genetics and physiology in oncology," said Michael Levin, Ph.D., Vannevar Bush Professor of Biology and corresponding author of the paper in the journal Oncotarget that describes the research. The paper appeared online in advance of print on May 1.

"These data also suggest a number of ways we might prevent, detect and treat cancer," Levin added, "for example, by using ion channel drugs – "electroceuticals" -- to target the bioelectric state of distant sites in the body. Ion channel agents, such as anti-epileptic drugs, are already approved for human use. "

... more about:
»Cancer »Oncotarget »acid »butyrate »drugs »levels »oncogenes »tadpoles »tumors

Levin and Brook T. Chernet, Ph.D., injected Xenopus laevis tadpoles with oncogenes associated with many human cancers. The oncogenes caused tumor-like structures to form in these locations. Levin and Chernet's study showed that the incidence of tumor formation could be significantly reduced through misexpression of hyperpolarizing ion channels, which control current flow across a cell membrane, even when these electrical signals originated far from the oncogene-expressing cells. "These distant bioelectric signals suppressed tumor growth, despite the cells' continued high levels of oncogene protein," said Chernet, a former doctoral student in Levin's lab.

Further investigation revealed that the tumor-suppressing effects of hyperpolarization were regulated by a mechanism involving the short chain fatty acid butyrate and its target, the enzyme histone deacetylase. In humans, butyrate is produced in the colon by natural bacterial fermentation of carbohydrates, and butyrate has been shown to protect against colorectal cancer. To confirm that bacterial butyrate was also involved in regulating distant tumor formation in tadpoles, the researchers administered antibiotics; they found that the drugs indeed reduced butyrate production and thereby stopped membrane-voltage-based tumor suppression.

Programming Bacteria to Prevent Tumors

"Our research uncovers a promising connection between the microbiome and cancer that is controlled by alterations in bioelectric signaling and also opens up exciting possibilities for biomedicine. Imagine bacteria that are metabolically programmed to produce butyrate levels appropriate to prevent tumors," said Levin.

The distance over which carcinogenesis can be predicted and controlled has been addressed in a handful of earlier studies, including work by Levin and colleagues. Levin and Chernet have shown that aberrant bioelectrical properties of tissue revealed the location where tumors were likely to form and that melanoma-like growth could be triggered by bioelectrical signaling of instructor cells far from the melanocytes. The two biologists say that more research is needed to determine whether such signaling occurs in mammalian cancer models and over what distance.

The Tufts biologists are also intrigued by the question of whether cancers emit bioelectrical information that could be detectable at a distance from the tumors themselves. "It is tempting to speculate that the long-range signaling connections are bi-directional," says Levin.

###

The research was supported by funding from the G. Harold and Leila Y. Mathers Charitable Foundation and DARPA (subaward W911NF-09-1-0125).

Chernet, B., & Levin, M. (2014). Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 5. This work was published May 1, 2014, online in advance of print.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoy a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | Eurek Alert!
Further information:
http://www.tufts.edu

Further reports about: Cancer Oncotarget acid butyrate drugs levels oncogenes tadpoles tumors

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>