Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers first worldwide to generate pluripotent stem cells from horses

28.02.2011
Discovery opens avenue for research into new veterinary and human treatments for a range of degenerative conditions

In a world first, pluripotent stem cells have been generated from horses by a team of researchers led by Dr. Andras Nagy at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital and Dr. Lawrence Smith at the University of Montreal's Faculty of Veterinary Science.

The findings will help enable new stem-cell based regenerative therapies in veterinary medicine, and because horses' muscle and tendon systems are similar to our own, aid the development of preclinical models leading to human applications. The study was published in the February 28 issue of the leading journal Stem Cell Reviews and Reports.

These induced pluripotent stem (iPS) cells can develop into most other cell types and are a source of great hope for use in regenerative medicine and the development of new drugs to prevent and treat various illnesses. One aspect of regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage or disease. "To date, iPS cells have been established from several species, but our study is the first to report the derivation of these changeable cells from horses," Dr. Smith explained.

The research represents a breakthrough for both human and animal health alike. "Equine iPS cells bring new therapeutic potential to the veterinary field, and open up the opportunity to validate stem-cell based therapies before clinical studies in humans," Dr. Nagy said. "As well, stem-cell based studies using the horse as a model more closely replicate human illnesses, when compared with studies in mice."

After two months of reprogramming equine somatic cells, the resulting iPS cell lines expressed hallmark markers of pluripotency, contained a correct set of horse chromosomes, and were able to form a full spectrum of cell types and tissues fulfilling the criteria of pluripotency. The term pluripotency refers to the ability of a stem cell to become any of the vast number of different cell types found in the body. "This means that the cell lines passed all the tests available to us for determining if they truly are what we think they are: pluripotent and a good source for future regenerative applications," said Kristina Nagy, research associate in the Nagy laboratory and lead author of the study.

"The horse is an excellent model for a range of human degenerative diseases, especially those involving joints, bones, tendons and ligaments, such as arthritis," said Dr. Sheila Laverty, a professor in the Faculty of Veterinary Medicine at the University of Montreal. "Bone fracture, as well as damaged cartilage, tendons and ligaments heal poorly in horses. Therefore, the use of iPS cells in these animals may help enhance long-term tissue repair." Further research will be required to develop clinical treatments.

Dr. Andras Nagy is a senior investigator at the Lunenfeld, the Canada Research Chair in Stem Cells and Regeneration and McEwen investigator. He received support from the Canadian Stem Cell Network of Canada for this research. Dr. Smith is the Canadian Research Chair in Animal Cloning and Stem Cells and received support from the Canadian Arthritis Network. His lab plays a key role in the University of Montreal's Animal Reproduction Research Centre.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>