Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Canadian researchers first worldwide to generate pluripotent stem cells from horses

Discovery opens avenue for research into new veterinary and human treatments for a range of degenerative conditions

In a world first, pluripotent stem cells have been generated from horses by a team of researchers led by Dr. Andras Nagy at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital and Dr. Lawrence Smith at the University of Montreal's Faculty of Veterinary Science.

The findings will help enable new stem-cell based regenerative therapies in veterinary medicine, and because horses' muscle and tendon systems are similar to our own, aid the development of preclinical models leading to human applications. The study was published in the February 28 issue of the leading journal Stem Cell Reviews and Reports.

These induced pluripotent stem (iPS) cells can develop into most other cell types and are a source of great hope for use in regenerative medicine and the development of new drugs to prevent and treat various illnesses. One aspect of regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage or disease. "To date, iPS cells have been established from several species, but our study is the first to report the derivation of these changeable cells from horses," Dr. Smith explained.

The research represents a breakthrough for both human and animal health alike. "Equine iPS cells bring new therapeutic potential to the veterinary field, and open up the opportunity to validate stem-cell based therapies before clinical studies in humans," Dr. Nagy said. "As well, stem-cell based studies using the horse as a model more closely replicate human illnesses, when compared with studies in mice."

After two months of reprogramming equine somatic cells, the resulting iPS cell lines expressed hallmark markers of pluripotency, contained a correct set of horse chromosomes, and were able to form a full spectrum of cell types and tissues fulfilling the criteria of pluripotency. The term pluripotency refers to the ability of a stem cell to become any of the vast number of different cell types found in the body. "This means that the cell lines passed all the tests available to us for determining if they truly are what we think they are: pluripotent and a good source for future regenerative applications," said Kristina Nagy, research associate in the Nagy laboratory and lead author of the study.

"The horse is an excellent model for a range of human degenerative diseases, especially those involving joints, bones, tendons and ligaments, such as arthritis," said Dr. Sheila Laverty, a professor in the Faculty of Veterinary Medicine at the University of Montreal. "Bone fracture, as well as damaged cartilage, tendons and ligaments heal poorly in horses. Therefore, the use of iPS cells in these animals may help enhance long-term tissue repair." Further research will be required to develop clinical treatments.

Dr. Andras Nagy is a senior investigator at the Lunenfeld, the Canada Research Chair in Stem Cells and Regeneration and McEwen investigator. He received support from the Canadian Stem Cell Network of Canada for this research. Dr. Smith is the Canadian Research Chair in Animal Cloning and Stem Cells and received support from the Canadian Arthritis Network. His lab plays a key role in the University of Montreal's Animal Reproduction Research Centre.

William Raillant-Clark | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>