Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the blind ‘hear’ colors and shapes?

11.03.2014

Yes, show Hebrew University researchers            

What if you could “hear” colors? Or shapes?  These features are normally perceived visually, but using sensory substitution devices (SSDs) they can now be conveyed to the brain noninvasively through other senses. 


Prof. Amir Amedi

At the Center for Human Perception and Cognition, headed by Prof. Amir Amedi of theEdmond andLily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University of Jerusalem Faculty of Medicine, the blind and visually impaired are being offered tools, via training with SSDs, to receive environmental visual information and interact with it in ways otherwise unimaginable. The work of Prof. Amedi and his colleagues is patented by Yissum, the Hebrew University’s Technology Transfer Company. 

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature camera connected to a small computer (or smart phone) and stereo headphones. The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera. 

With the EyeMusic SSD (available free at the Apple App store at http://tinyurl.com/oe8d4p4), one hears pleasant musical notes to convey information about colors, shapes and location of objects in the world. 

Using this SSD equipment and a unique training program, the blind are able to achieve various complex. visual-linked abilities. In recent articles in Restorative Neurology and Neuroscience and Scientific Reports, blind and blindfolded-sighted users of the EyeMusic were shown to correctly perceive and interact with objects, such as recognizing different shapes and colors or reaching for a beverage (A live demonstration can be seen at http://youtu.be/r6bz1pOEJWg). 

In another use of EyeMusic, it was shown that other fast and accurate movements can be guided by the EyeMusic and visuo-motor learning.  In studies published in two prestigious scientific journals, Neuron and Current Biology, it was demonstrated that the blind can characterize sound-conveyed images into complex object categories (such as faces, houses and outdoor scenes, plus everyday objects) and could locate people's positions, identify facial expressions and read letters and words, (See YouTube channel http://www.youtube.com/amiramedilab for demonstrations.) 

Despite these encouraging behavioral demonstrations, SSDs are currently not widely used by the blind population. However, in a recent review published in Neuroscience & Biobehavioral Reviews, the reasons that have prevented their adoption have changed for the better over the past few years. For instance, new technological advances enable SSDs to be much cheaper, much smaller and lighter, and they can run using a standard Smart phone. Additionally, new computerized training methods and environments boost training and performance. 

The Hebrew University research has shown that contrary to the long-held conception of the cortex being divided into separate vision-processing areas, auditory areas, etc., new findings over the past decade demonstrate that many brain areas are characterized by their computational task, and can be activated using senses other than the one commonly used for this task, even for people who were never exposed to "original" sensory information at all (such as a person born blind that never saw one photon of light in his life). 

When processing “visual' information” conveyed through SSD, it was shown by the researchers that congenitally blind people who learned to read by touch using the Braille script or through their ears with sensory substitution devices use the same areas in the visual cortex as those used by sighted readers. A recent example of this approach was just published in Current biology, showing that blind subjects "see" body shapes via their ears using SSD equipment and training. 

There is a whole network of regions in the human brain dedicated to processing and perceiving of body shapes, starting from the areas processing vision in the cortex, leading to the “Extrastriate Body Area,” or EBA, and further connecting to multiple brain areas deciphering people’s motion in space, their feelings and intents. 

In tests with the blind, it was found that their EBA was functionally connected to the whole network of body-processing found in the sighted. This lends strength to the researchers’ new theory of the brain as a sensory-independent task machine, rather than as a pure sensory (vision, audition, touch) machine. 

“The human brain is more flexible than we thought,” says Prof. Amedi. “These results give a lot of hope for the successful regaining of visual functions using cheap non-invasive SSDs or other invasive sight restoration approaches. They suggest that in the blind, brain areas have the potential to be ‘awakened’ to processing visual properties and tasks even after years or maybe even lifelong blindness, if the proper technologies and training approaches are used.”      

CONTACT: 

Jerry Barach, Hebrew University Foreign Press Liaison

02-5882904 (international: 972-2-5882904)

jerryb@savion.huji.ac.il

Or Ofra Ash, head of Marketing & Communications

02-5882910, 054-8820425

e-mail: ofraas@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: Braille Medicine SSD Technology hear non-invasive processing sensory

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>