Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the blind ‘hear’ colors and shapes?

11.03.2014

Yes, show Hebrew University researchers            

What if you could “hear” colors? Or shapes?  These features are normally perceived visually, but using sensory substitution devices (SSDs) they can now be conveyed to the brain noninvasively through other senses. 


Prof. Amir Amedi

At the Center for Human Perception and Cognition, headed by Prof. Amir Amedi of theEdmond andLily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University of Jerusalem Faculty of Medicine, the blind and visually impaired are being offered tools, via training with SSDs, to receive environmental visual information and interact with it in ways otherwise unimaginable. The work of Prof. Amedi and his colleagues is patented by Yissum, the Hebrew University’s Technology Transfer Company. 

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature camera connected to a small computer (or smart phone) and stereo headphones. The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera. 

With the EyeMusic SSD (available free at the Apple App store at http://tinyurl.com/oe8d4p4), one hears pleasant musical notes to convey information about colors, shapes and location of objects in the world. 

Using this SSD equipment and a unique training program, the blind are able to achieve various complex. visual-linked abilities. In recent articles in Restorative Neurology and Neuroscience and Scientific Reports, blind and blindfolded-sighted users of the EyeMusic were shown to correctly perceive and interact with objects, such as recognizing different shapes and colors or reaching for a beverage (A live demonstration can be seen at http://youtu.be/r6bz1pOEJWg). 

In another use of EyeMusic, it was shown that other fast and accurate movements can be guided by the EyeMusic and visuo-motor learning.  In studies published in two prestigious scientific journals, Neuron and Current Biology, it was demonstrated that the blind can characterize sound-conveyed images into complex object categories (such as faces, houses and outdoor scenes, plus everyday objects) and could locate people's positions, identify facial expressions and read letters and words, (See YouTube channel http://www.youtube.com/amiramedilab for demonstrations.) 

Despite these encouraging behavioral demonstrations, SSDs are currently not widely used by the blind population. However, in a recent review published in Neuroscience & Biobehavioral Reviews, the reasons that have prevented their adoption have changed for the better over the past few years. For instance, new technological advances enable SSDs to be much cheaper, much smaller and lighter, and they can run using a standard Smart phone. Additionally, new computerized training methods and environments boost training and performance. 

The Hebrew University research has shown that contrary to the long-held conception of the cortex being divided into separate vision-processing areas, auditory areas, etc., new findings over the past decade demonstrate that many brain areas are characterized by their computational task, and can be activated using senses other than the one commonly used for this task, even for people who were never exposed to "original" sensory information at all (such as a person born blind that never saw one photon of light in his life). 

When processing “visual' information” conveyed through SSD, it was shown by the researchers that congenitally blind people who learned to read by touch using the Braille script or through their ears with sensory substitution devices use the same areas in the visual cortex as those used by sighted readers. A recent example of this approach was just published in Current biology, showing that blind subjects "see" body shapes via their ears using SSD equipment and training. 

There is a whole network of regions in the human brain dedicated to processing and perceiving of body shapes, starting from the areas processing vision in the cortex, leading to the “Extrastriate Body Area,” or EBA, and further connecting to multiple brain areas deciphering people’s motion in space, their feelings and intents. 

In tests with the blind, it was found that their EBA was functionally connected to the whole network of body-processing found in the sighted. This lends strength to the researchers’ new theory of the brain as a sensory-independent task machine, rather than as a pure sensory (vision, audition, touch) machine. 

“The human brain is more flexible than we thought,” says Prof. Amedi. “These results give a lot of hope for the successful regaining of visual functions using cheap non-invasive SSDs or other invasive sight restoration approaches. They suggest that in the blind, brain areas have the potential to be ‘awakened’ to processing visual properties and tasks even after years or maybe even lifelong blindness, if the proper technologies and training approaches are used.”      

CONTACT: 

Jerry Barach, Hebrew University Foreign Press Liaison

02-5882904 (international: 972-2-5882904)

jerryb@savion.huji.ac.il

Or Ofra Ash, head of Marketing & Communications

02-5882910, 054-8820425

e-mail: ofraas@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: Braille Medicine SSD Technology hear non-invasive processing sensory

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>