Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the blind ‘hear’ colors and shapes?

11.03.2014

Yes, show Hebrew University researchers            

What if you could “hear” colors? Or shapes?  These features are normally perceived visually, but using sensory substitution devices (SSDs) they can now be conveyed to the brain noninvasively through other senses. 


Prof. Amir Amedi

At the Center for Human Perception and Cognition, headed by Prof. Amir Amedi of theEdmond andLily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University of Jerusalem Faculty of Medicine, the blind and visually impaired are being offered tools, via training with SSDs, to receive environmental visual information and interact with it in ways otherwise unimaginable. The work of Prof. Amedi and his colleagues is patented by Yissum, the Hebrew University’s Technology Transfer Company. 

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature camera connected to a small computer (or smart phone) and stereo headphones. The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera. 

With the EyeMusic SSD (available free at the Apple App store at http://tinyurl.com/oe8d4p4), one hears pleasant musical notes to convey information about colors, shapes and location of objects in the world. 

Using this SSD equipment and a unique training program, the blind are able to achieve various complex. visual-linked abilities. In recent articles in Restorative Neurology and Neuroscience and Scientific Reports, blind and blindfolded-sighted users of the EyeMusic were shown to correctly perceive and interact with objects, such as recognizing different shapes and colors or reaching for a beverage (A live demonstration can be seen at http://youtu.be/r6bz1pOEJWg). 

In another use of EyeMusic, it was shown that other fast and accurate movements can be guided by the EyeMusic and visuo-motor learning.  In studies published in two prestigious scientific journals, Neuron and Current Biology, it was demonstrated that the blind can characterize sound-conveyed images into complex object categories (such as faces, houses and outdoor scenes, plus everyday objects) and could locate people's positions, identify facial expressions and read letters and words, (See YouTube channel http://www.youtube.com/amiramedilab for demonstrations.) 

Despite these encouraging behavioral demonstrations, SSDs are currently not widely used by the blind population. However, in a recent review published in Neuroscience & Biobehavioral Reviews, the reasons that have prevented their adoption have changed for the better over the past few years. For instance, new technological advances enable SSDs to be much cheaper, much smaller and lighter, and they can run using a standard Smart phone. Additionally, new computerized training methods and environments boost training and performance. 

The Hebrew University research has shown that contrary to the long-held conception of the cortex being divided into separate vision-processing areas, auditory areas, etc., new findings over the past decade demonstrate that many brain areas are characterized by their computational task, and can be activated using senses other than the one commonly used for this task, even for people who were never exposed to "original" sensory information at all (such as a person born blind that never saw one photon of light in his life). 

When processing “visual' information” conveyed through SSD, it was shown by the researchers that congenitally blind people who learned to read by touch using the Braille script or through their ears with sensory substitution devices use the same areas in the visual cortex as those used by sighted readers. A recent example of this approach was just published in Current biology, showing that blind subjects "see" body shapes via their ears using SSD equipment and training. 

There is a whole network of regions in the human brain dedicated to processing and perceiving of body shapes, starting from the areas processing vision in the cortex, leading to the “Extrastriate Body Area,” or EBA, and further connecting to multiple brain areas deciphering people’s motion in space, their feelings and intents. 

In tests with the blind, it was found that their EBA was functionally connected to the whole network of body-processing found in the sighted. This lends strength to the researchers’ new theory of the brain as a sensory-independent task machine, rather than as a pure sensory (vision, audition, touch) machine. 

“The human brain is more flexible than we thought,” says Prof. Amedi. “These results give a lot of hope for the successful regaining of visual functions using cheap non-invasive SSDs or other invasive sight restoration approaches. They suggest that in the blind, brain areas have the potential to be ‘awakened’ to processing visual properties and tasks even after years or maybe even lifelong blindness, if the proper technologies and training approaches are used.”      

CONTACT: 

Jerry Barach, Hebrew University Foreign Press Liaison

02-5882904 (international: 972-2-5882904)

jerryb@savion.huji.ac.il

Or Ofra Ash, head of Marketing & Communications

02-5882910, 054-8820425

e-mail: ofraas@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: Braille Medicine SSD Technology hear non-invasive processing sensory

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>