Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cambridge team discovers novel pathway involved in therapy-resistant cancers

02.01.2009
Scientists at The Babraham Institute have begun to unpick the complex mechanisms underpinning the development of drug resistant cancers. They have identified a novel target that may help to combat the growing problem of therapy resistant cancers and pave the way for innovative therapeutic approaches.

Their discovery, reported in the latest edition of the New England Journal of Medicine, centres on the significance of DNA damage for both normal cells and cancer cells. It reveals that a biochemical signalling pathway, that normally ensures damaged cells are diverted towards cellular suicide, is blocked in certain cancers, rendering them resistant to certain types of treatment.

DNA damage is a common event in a cell’s life, a consequence of incorrect copying of the DNA during cell division or provoked by elements in our environment like tobacco smoke and sunlight. However, if DNA damage occurs, the cell normally triggers a repair response and if the damage is not repaired, the cell is targeted for cell death, a process known as apoptosis. In this way the body protects itself from cells that might become cancerous. The cells that do become cancerous manage to by-pass these repair and self-destruction pathways, promoting the survival of damaged cells.

The research is a collaboration between the BBSRC-funded Babraham Institute, the University of Cambridge and Addenbrooke’s Hospital, using cells from patients with chronic myeloid leukaemia (CML), and polycythemia vera (PV), two myeloproliferative disorders.

Cancers, such as the leukaemias investigated in this work, are characterised by an accumulation of DNA damage. DNA damage triggers several pathways to ensure that cells die by apoptosis. The authors describe a key new pathway involved in this process, and its subversion in cancer cells.

The team have found that DNA damage in normal cells increases the activity of a proton pump located in the cell membrane, known as NHE-1, which raises the pH of the cell. This has a critical effect on a protein called Bcl-xL, known as a survival protein because of its ability to suppress cell death. However, in the more alkaline environment (higher pH) a chemical process called deamidation converts Bcl-xL into a form that allows cells with damaged DNA to die. The authors have discovered that this pathway is inhibited in (cancerous) myeloid cells, keeping them alive to proceed with their deadly mission. This is the first demonstration of a role for deamidation in human malignancy.

Both the leukaemias studied by the authors are caused by oncogenic tyrosine kinases. These are enzymes - chemical catalysts - that trigger cancer when their activity is abnormally high. These kinases not only cause cells to become cancerous in the first place, but also make the cells resistant to chemotherapy and radiotherapy once they have turned into cancer cells. The authors have discovered that it is these kinases that block the key Bcl-xL deamidation pathway that normally allows DNA damaged cells to die. The activated tyrosine kinase causing CML is called BCR-ABL, whereas in PV the culprit is JAK-2. Altogether more than 30 aberrant tyrosine kinases are known to cause human cancers.

“This discovery provides new insights into how oncogenes, the genes that cause cancer, allow cells to accumulate more and more damage to their DNA without dying”, explains Dr Denis Alexander. “This new understanding of how oncogenes work also opens up some interesting ideas for future cancer therapies".

Cancer therapies depend to a large degree on the DNA damage caused by chemotherapy or radiotherapy, causing cancer cells to die. However, in cancers caused by tyrosine kinases the cells are often resistant to such therapies, referred to as ‘genotoxic resistance’. Fortunately inhibitors of the oncogenic kinases are now being increasingly used in the clinic but the kinases sometimes mutate so that this therapy no longer works.

The therapeutic interest in this research comes from the authors’ finding that simply switching back on the Bcl-xL deamidation pathway causes the cancer cells to die. This can be engineered in living cells by increasing the pH inside the cells artificially, which causes the Bcl-xL to deamidate so that the cells undergo apoptosis.

This therapeutic ‘proof-of-principle’ was dramatically illustrated by studying a CML patient’s cells which had become resistant to Imatinib, the BCR-ABL inhibitor now widely used in the clinic. As expected, Imatinib was unable to restore the Bcl-xL deamidation pathway in the patient’s cells. But the resistance could be bypassed by artificially (genetically) increasing the level of NHE-1 in the drug-resistant CML cells when studied in the laboratory, so increasing cancer cell death. So drug resistance can be overcome by activating the NHE-1 pathway, thereby increasing the pH inside the cell, and in turn Bcl-xL deamidation and apoptosis.

The discovery that modulating the NHE-1/Bcl-xL signalling pathway can override resistance to controlled cell death (apoptosis) in cancers like CML and PV, paves the way for new therapeutic approaches that could be of immense importance in cancers where Bcl-xL plays a pivotal role in genotoxic resistance.

This research was supported by the Association for International Cancer Research, the Biotechnology and Biological Sciences Research Council (BBSRC), the U.K. Leukaemia Research Fund, the Wellcome Trust, the U.K. Medical Research Council, Cancer Research UK, and the U.S. Leukemia and Lymphoma Society.

Dr Denis Alexander | alfa
Further information:
http://www.babraham.ac.uk

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>