Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cambridge team discovers novel pathway involved in therapy-resistant cancers

02.01.2009
Scientists at The Babraham Institute have begun to unpick the complex mechanisms underpinning the development of drug resistant cancers. They have identified a novel target that may help to combat the growing problem of therapy resistant cancers and pave the way for innovative therapeutic approaches.

Their discovery, reported in the latest edition of the New England Journal of Medicine, centres on the significance of DNA damage for both normal cells and cancer cells. It reveals that a biochemical signalling pathway, that normally ensures damaged cells are diverted towards cellular suicide, is blocked in certain cancers, rendering them resistant to certain types of treatment.

DNA damage is a common event in a cell’s life, a consequence of incorrect copying of the DNA during cell division or provoked by elements in our environment like tobacco smoke and sunlight. However, if DNA damage occurs, the cell normally triggers a repair response and if the damage is not repaired, the cell is targeted for cell death, a process known as apoptosis. In this way the body protects itself from cells that might become cancerous. The cells that do become cancerous manage to by-pass these repair and self-destruction pathways, promoting the survival of damaged cells.

The research is a collaboration between the BBSRC-funded Babraham Institute, the University of Cambridge and Addenbrooke’s Hospital, using cells from patients with chronic myeloid leukaemia (CML), and polycythemia vera (PV), two myeloproliferative disorders.

Cancers, such as the leukaemias investigated in this work, are characterised by an accumulation of DNA damage. DNA damage triggers several pathways to ensure that cells die by apoptosis. The authors describe a key new pathway involved in this process, and its subversion in cancer cells.

The team have found that DNA damage in normal cells increases the activity of a proton pump located in the cell membrane, known as NHE-1, which raises the pH of the cell. This has a critical effect on a protein called Bcl-xL, known as a survival protein because of its ability to suppress cell death. However, in the more alkaline environment (higher pH) a chemical process called deamidation converts Bcl-xL into a form that allows cells with damaged DNA to die. The authors have discovered that this pathway is inhibited in (cancerous) myeloid cells, keeping them alive to proceed with their deadly mission. This is the first demonstration of a role for deamidation in human malignancy.

Both the leukaemias studied by the authors are caused by oncogenic tyrosine kinases. These are enzymes - chemical catalysts - that trigger cancer when their activity is abnormally high. These kinases not only cause cells to become cancerous in the first place, but also make the cells resistant to chemotherapy and radiotherapy once they have turned into cancer cells. The authors have discovered that it is these kinases that block the key Bcl-xL deamidation pathway that normally allows DNA damaged cells to die. The activated tyrosine kinase causing CML is called BCR-ABL, whereas in PV the culprit is JAK-2. Altogether more than 30 aberrant tyrosine kinases are known to cause human cancers.

“This discovery provides new insights into how oncogenes, the genes that cause cancer, allow cells to accumulate more and more damage to their DNA without dying”, explains Dr Denis Alexander. “This new understanding of how oncogenes work also opens up some interesting ideas for future cancer therapies".

Cancer therapies depend to a large degree on the DNA damage caused by chemotherapy or radiotherapy, causing cancer cells to die. However, in cancers caused by tyrosine kinases the cells are often resistant to such therapies, referred to as ‘genotoxic resistance’. Fortunately inhibitors of the oncogenic kinases are now being increasingly used in the clinic but the kinases sometimes mutate so that this therapy no longer works.

The therapeutic interest in this research comes from the authors’ finding that simply switching back on the Bcl-xL deamidation pathway causes the cancer cells to die. This can be engineered in living cells by increasing the pH inside the cells artificially, which causes the Bcl-xL to deamidate so that the cells undergo apoptosis.

This therapeutic ‘proof-of-principle’ was dramatically illustrated by studying a CML patient’s cells which had become resistant to Imatinib, the BCR-ABL inhibitor now widely used in the clinic. As expected, Imatinib was unable to restore the Bcl-xL deamidation pathway in the patient’s cells. But the resistance could be bypassed by artificially (genetically) increasing the level of NHE-1 in the drug-resistant CML cells when studied in the laboratory, so increasing cancer cell death. So drug resistance can be overcome by activating the NHE-1 pathway, thereby increasing the pH inside the cell, and in turn Bcl-xL deamidation and apoptosis.

The discovery that modulating the NHE-1/Bcl-xL signalling pathway can override resistance to controlled cell death (apoptosis) in cancers like CML and PV, paves the way for new therapeutic approaches that could be of immense importance in cancers where Bcl-xL plays a pivotal role in genotoxic resistance.

This research was supported by the Association for International Cancer Research, the Biotechnology and Biological Sciences Research Council (BBSRC), the U.K. Leukaemia Research Fund, the Wellcome Trust, the U.K. Medical Research Council, Cancer Research UK, and the U.S. Leukemia and Lymphoma Society.

Dr Denis Alexander | alfa
Further information:
http://www.babraham.ac.uk

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>