Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cambridge team discovers novel pathway involved in therapy-resistant cancers

02.01.2009
Scientists at The Babraham Institute have begun to unpick the complex mechanisms underpinning the development of drug resistant cancers. They have identified a novel target that may help to combat the growing problem of therapy resistant cancers and pave the way for innovative therapeutic approaches.

Their discovery, reported in the latest edition of the New England Journal of Medicine, centres on the significance of DNA damage for both normal cells and cancer cells. It reveals that a biochemical signalling pathway, that normally ensures damaged cells are diverted towards cellular suicide, is blocked in certain cancers, rendering them resistant to certain types of treatment.

DNA damage is a common event in a cell’s life, a consequence of incorrect copying of the DNA during cell division or provoked by elements in our environment like tobacco smoke and sunlight. However, if DNA damage occurs, the cell normally triggers a repair response and if the damage is not repaired, the cell is targeted for cell death, a process known as apoptosis. In this way the body protects itself from cells that might become cancerous. The cells that do become cancerous manage to by-pass these repair and self-destruction pathways, promoting the survival of damaged cells.

The research is a collaboration between the BBSRC-funded Babraham Institute, the University of Cambridge and Addenbrooke’s Hospital, using cells from patients with chronic myeloid leukaemia (CML), and polycythemia vera (PV), two myeloproliferative disorders.

Cancers, such as the leukaemias investigated in this work, are characterised by an accumulation of DNA damage. DNA damage triggers several pathways to ensure that cells die by apoptosis. The authors describe a key new pathway involved in this process, and its subversion in cancer cells.

The team have found that DNA damage in normal cells increases the activity of a proton pump located in the cell membrane, known as NHE-1, which raises the pH of the cell. This has a critical effect on a protein called Bcl-xL, known as a survival protein because of its ability to suppress cell death. However, in the more alkaline environment (higher pH) a chemical process called deamidation converts Bcl-xL into a form that allows cells with damaged DNA to die. The authors have discovered that this pathway is inhibited in (cancerous) myeloid cells, keeping them alive to proceed with their deadly mission. This is the first demonstration of a role for deamidation in human malignancy.

Both the leukaemias studied by the authors are caused by oncogenic tyrosine kinases. These are enzymes - chemical catalysts - that trigger cancer when their activity is abnormally high. These kinases not only cause cells to become cancerous in the first place, but also make the cells resistant to chemotherapy and radiotherapy once they have turned into cancer cells. The authors have discovered that it is these kinases that block the key Bcl-xL deamidation pathway that normally allows DNA damaged cells to die. The activated tyrosine kinase causing CML is called BCR-ABL, whereas in PV the culprit is JAK-2. Altogether more than 30 aberrant tyrosine kinases are known to cause human cancers.

“This discovery provides new insights into how oncogenes, the genes that cause cancer, allow cells to accumulate more and more damage to their DNA without dying”, explains Dr Denis Alexander. “This new understanding of how oncogenes work also opens up some interesting ideas for future cancer therapies".

Cancer therapies depend to a large degree on the DNA damage caused by chemotherapy or radiotherapy, causing cancer cells to die. However, in cancers caused by tyrosine kinases the cells are often resistant to such therapies, referred to as ‘genotoxic resistance’. Fortunately inhibitors of the oncogenic kinases are now being increasingly used in the clinic but the kinases sometimes mutate so that this therapy no longer works.

The therapeutic interest in this research comes from the authors’ finding that simply switching back on the Bcl-xL deamidation pathway causes the cancer cells to die. This can be engineered in living cells by increasing the pH inside the cells artificially, which causes the Bcl-xL to deamidate so that the cells undergo apoptosis.

This therapeutic ‘proof-of-principle’ was dramatically illustrated by studying a CML patient’s cells which had become resistant to Imatinib, the BCR-ABL inhibitor now widely used in the clinic. As expected, Imatinib was unable to restore the Bcl-xL deamidation pathway in the patient’s cells. But the resistance could be bypassed by artificially (genetically) increasing the level of NHE-1 in the drug-resistant CML cells when studied in the laboratory, so increasing cancer cell death. So drug resistance can be overcome by activating the NHE-1 pathway, thereby increasing the pH inside the cell, and in turn Bcl-xL deamidation and apoptosis.

The discovery that modulating the NHE-1/Bcl-xL signalling pathway can override resistance to controlled cell death (apoptosis) in cancers like CML and PV, paves the way for new therapeutic approaches that could be of immense importance in cancers where Bcl-xL plays a pivotal role in genotoxic resistance.

This research was supported by the Association for International Cancer Research, the Biotechnology and Biological Sciences Research Council (BBSRC), the U.K. Leukaemia Research Fund, the Wellcome Trust, the U.K. Medical Research Council, Cancer Research UK, and the U.S. Leukemia and Lymphoma Society.

Dr Denis Alexander | alfa
Further information:
http://www.babraham.ac.uk

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>