Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech and UCSD scientists establish leech as model for study of reproductive behavior

17.03.2010
Researchers at the California Institute of Technology (Caltech) and the University of California, San Diego (UCSD) have discovered that injecting a simple hormone into leeches creates a novel way to study how hormones and the nervous system work together to produce species-specific reproductive behavior.

A paper describing the work appears in the March 11 online edition of the journal Current Biology.

Daniel Wagenaar, Broad Senior Research Fellow in Brain Circuitry at Caltech and first author of the paper, found that injecting a particular hormone into a medicinal leech (Hirudo verbana) induced a series of movements that closely mimic natural reproductive behavior, including a stereotypical 180-degree twisting of the body. Wagenaar's studies were initiated at UCSD.

The twisting, which occurs with a period of approximately five minutes—making it one of the slowest behavioral rhythms ever discovered, aside from diurnal and annual rhythms—serves to align the reproductive pores on the ventral (under) side of one leech with the complementary pores on the ventral side of a partner, thus facilitating copulation. Without this behavior, copulation would fail.

"In many animal species, sexual reproduction involves highly specific and complex behaviors at all stages from courtship to copulation and beyond," Wagenaar says. "Most animals perform these behaviors without any learning, which strongly suggests that the behaviors are somehow 'hardwired' in their nervous systems."

The relationship between the activity of nerve cells and leech behavior has been very well studied, and the simplicity of the leech nervous system, which contains only about 15,000 neurons—orders of magnitude fewer than even a mosquito—has greatly facilitated this work.

The studies described in Wagenaar's paper were inspired by the combination of the complex behaviors of leeches breeding in the laboratory and its relatively simple nervous system.

Reproduction is one of the most important activities of all animal species, Wagenaar notes, but in leeches, as in other sexually reproducing species, it has proven difficult to understand how this critical behavior is produced by activity in the nervous system.

"Few animals will execute reproductive behaviors while they are being subjected to neurobiological recording methods," Wagenaar says.

Wagenaar and his colleagues got around the relative reticence of the leeches by injecting them with a type of hormone found in a wide variety of animals. In humans and in other mammals, two versions of this hormone—vasopressin and oxytocin—play a powerful role in reproductive physiology and pair-bonding. Leeches also produce a member of this hormone family, called hirudotocin. The groups at UCSD and Caltech discovered that the hormone plays a role in normal leech mating behavior.

Within minutes after a leech has received an injection of hirudotocin, it displays a variety of courtship behaviors, even if it is alone in a container. During courtship, leeches open their mouths wide and explore the bodies of potential partners by running the mouth along the skin, while also twisting their bodies like a corkscrew. These behaviors were known to be elicited by hirudotocin and other closely related members of the vasopressin molecular family.

"Hirudotocin is produced by the leech, but under ordinary conditions it may be present in very small quantities," Wagenaar says. "By injecting a relatively large quantity of the hormone, we may, in a sense, overwhelm the system. Whereas small doses only increase the tendency toward the behavior, allowing other cues to override it (as in the natural case), larger doses make this tendency so strong that nothing else can get in the way."

Using progressively more reduced leech preparations—that is, smaller and smaller pieces of a leech—the scientists identified the part of its central nervous system responsible for generating the mating behavior. "One of the attractions of the lower invertebrates is that you can literally cut them in pieces, and each of the pieces will more or less keep performing the function it would have performed in the whole animal," Wagenaar explains.

"We started out studying the behavior of whole animals that we simply injected with the hormone. Then we cut leeches in thirds and injected each part with hormone, and found that the hormone acted only in the central part, which contains the reproductive organs. We then cut open that central part and stretched out the skin so we could study in more detail the muscle contractions underlying the behavior of the whole animal."

"Finally," he says, "we removed the body entirely, keeping just the nervous system, and found that even the disembodied central nervous system"—in particular, the ganglia (clusters of nerve cell bodies) located in the reproductive segments of the leech—"produced the appropriate nerve signals to generate the pattern of muscle activity we had observed."

"Our next project will be to use voltage-sensitive dyes to record signals from a large fraction of all the neurons in the reproductive ganglia, to find which ones contribute to generating and maintaining the behavior," he adds.

Wagenaar and his colleagues believe these studies establish the leech as a new model system for studying how hormones act on the nervous system to produce mating behavior, and for deciphering the specific neural circuits that control the behavior.

"The knowledge gained from these studies," adds study coauthor Kathleen French of UCSD, "is expected to shed new light on the interactions of hormones and neurons in controlling courtship and reproductive behavior in a wide variety of sexually reproducing species, from the lowly leech to humans in a singles bar."

The paper, "A Hormone-Activated Central Pattern Generator for Courtship," was coauthored by M. Sarhas Hamilton, and William B. Kristan, Jr.; and Tracy Huang of the University of California, Berkeley. The work was supported by the National Institutes of Health, the National Science Foundation, the Broad Foundations, Microsoft Research, and a private gift from Richard Geckler.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>