Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists lead deep-sea discovery voyage

06.02.2009
Research mission uncovers several new species and thousands of fossilized coral samples

Scientists from the California Institute of Technology (Caltech) and an international team of collaborators have returned from a month-long deep-sea voyage to a marine reserve near Tasmania, Australia, that not only netted coral-reef samples likely to provide insight into the impact of climate change on the world's oceans, but also brought to light at least three never-before-seen species of sea life.

"It was truly one of those transcendent moments," says Caltech's Jess Adkins of the descents made by the remotely operated submersible Jason. Adkins was the cruise's lead scientist and is an associate professor of geochemistry and global environmental science at Caltech. "We were flying--literally flying--over these deep-sea structures that look like English gardens, but are actually filled with all of these carnivorous, Seuss-like creatures that no one else has ever seen."

The voyage on the research vessel RV Thompson explored the Tasman Fracture Commonwealth Marine Reserve, southwest of Tasmania. The voyage was funded by the National Science Foundation and was the second of two cruises taken by the team, which included researchers from the United States--including scientists from Caltech and the Woods Hole Oceanographic Institution in Massachusetts, which owns and operates the submersible Jason--and Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO). The first of those voyages was taken in January 2008, with this most recent one spanning 33 days from mid-December 2008 through mid-January 2009.

Up until now, the area of the reef the scientists were exploring--called the Tasman Fracture Zone--had only been explored to a depth of 1,800 meters (more than 5,900 feet). Using Jason, the researchers on this trip were able to reach as far down as 4,000 meters (well over 13,000 feet).

"We set out to search for life deeper than any previous voyage in Australian waters," notes scientist Ron Thresher from CSIRO's Climate Adaptation and Wealth from Oceans Flagships.

The cruise had two main goals, says Adkins. One was to try to use deep-sea corals to reconstruct the paleoclimate--with an emphasis on the changes in climate over the last 100,000 years--and to understand the fluctuations in CO2 found in the ice-core records. Investigators also wanted to look at changes in the ocean over a much smaller slice of time--the past few hundred to one thousand or so years. "We want to see what's happened to the corals over the Industrial Revolution timescale," says Adkins. "And we want to see if we can document those changes."

The second goal? "Simply to document what's down there," says Adkins.

"In one sense, the deep ocean is less explored than Mars," he adds. "So every time you go to look down there you see new things, magical things."

Among the "magical things" seen on this trip were

- a new species of carnivorous sea squirt that "looks and behaves like a Venus fly trap," says Adkins;

- new species of barnacles (some of which Adkins says may even belong to an entirely new family); and

- a new species of sea anemone that Adkins calls "the bane of our existence," because it looks just like the coral they were trying to collect.

The sea anemone was particularly vexing for the researchers, because they were hoping to find deep-sea (or abyssal) samples of the fossilized coral, but were unable to find the coral much below 2,400 meters (nearly 7,800 feet). The look-alike sea anemone, on the other hand, kept popping up all over the place on the deep-sea floor, raising--and then dashing--the scientists' hopes.

"Not being able to find the coral down deeper was our single biggest disappointment on the trip," says Adkins.

Still, the 10,000-plus samples collected will help the researchers begin their work of deciphering just what has been happening to the ocean throughout the centuries of climate change, and during and between glacial cycles. First up: dating the fossils collected on this trip in order to determine which slice of history they came from.

"The deep ocean is part and parcel of these rapid climate changes," says Adkins. "These corals will be our window into what their impact is on climate, and how they have that impact. The info is there; now we just have to unpack it."

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>