Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists help launch the first standard graphical notation for biology

13.08.2009
Researchers at the California Institute of Technology (Caltech) and their colleagues in 30 laboratories worldwide have released a new set of standards for graphically representing biological information—the biology equivalent of the circuit diagram in electronics.

This visual language should make it easier to exchange complex information, so that biological models are depicted more accurately, consistently, and in a more readily understandable way.

The new standard, called the Systems Biology Graphical Notation (SBGN), was published in the August 8 issue of the journal Nature Biotechnology.

Researchers use standardized visual languages to communicate complex information in many scientific and engineering fields. A well-known example is the circuit diagram in electrical engineering. However, until now, biology lacked a standardized notation for describing biological interactions, pathways, and networks, even though the discipline is dominated by graphical information.

The SBGN project was launched in 2005 as a united effort to specifically develop a new graphical standard for molecular and systems-biology applications. The project, which was initiated by Hiroaki Kitano of the Systems Biology Institute in Tokyo, Japan, is coordinated by Nicolas Le Novère of the European Molecular Biology Laboratory's European Bioinformatics Institute in Cambridge, England, and senior research fellow Michael Hucka, codirector of the Biological Network Modeling Center at Caltech's Beckman Institute. The international team of researchers that created SBGN is composed of biochemists, modelers, and computer scientists, who developed the notation in collaboration with a broader community of researchers constituting the target user community.

"Engineers, architects, physicists, and software developers all have standard graphical notations for depicting the things they work on, which makes it possible for everyone in those fields to be on the same page, as it were," says Hucka. "I think SBGN represents the first truly broad-based attempt at establishing the same kind of standardization in biology."

SBGN will make it easier for biologists to understand each other's models and share network diagrams more easily, which, Hucka says, has never been more important than in today's era of high-throughput technologies and large-scale network reconstruction efforts. A standard graphical notation will help researchers share this mass of data more efficiently and accurately, which will benefit systems biologists working on a variety of biochemical processes, including gene regulation, metabolism, and cellular signaling.

"Finally, and perhaps most excitingly," adds Hucka, "I believe that, just as happened with the engineering fields, SBGN will act as an enabler for the emergence of new industries devoted to the creation of software tools for working with SBGN, as well as its teaching and publication."

Previous graphical notations in biology have tended to be ambiguous, used in different ways by different researchers, and only suited to specific needs—for example, to represent metabolic networks or signaling pathways. Past efforts to create a more rigid notation failed to become accepted as a standard by the community. Hucka and his collaborators believe that SBGN should be more successful because it represents a more concerted effort to establish a standard by engaging many biologists, modelers, and software-tool developers. In fact, many of those involved in the SBGN effort are the same pioneers who proposed previous notations, demonstrating the degree to which they endorse SBGN as a new standard.

To ensure that this new visual language does not become too vast and complicated, the researchers decided to define three separate types of diagram, which describe molecular process, relationships between entities, and links among biochemical activities. These different types of diagrams complement each other by representing different "views" of the same information, presented in different ways for different purposes, but reusing most of the same graphical symbols. This approach reduces the complexity of any one type of diagram while broadening the range of what can be expressed about a given biological system.

"As biology focuses more on managing complexity with quantitative and systematic methods, standards such as SBGN play an essential role. SBGN combines an intuitive notation with the rigorous style of engineering and math," says John Doyle, the John G. Braun Professor of Control and Dynamical Systems, Bioengineering, and Electrical Engineering at Caltech.

"As with SBML (the Systems Biology Markup Language), Mike and his collaborators have provided the kind of solid foundation that the whole community can build on. SBML has been a highly successful standardization effort for software interoperability, and SBGN is sure to have the same kind of impact on human communication in biology," Doyle adds.

The work at Caltech in the paper, "The Systems Biology Graphical Notation," was supported by the New Energy and Industrial Technology Development Organization and a Beckman Institute grant funding the Biological Network Modeling Center.

Visit the Caltech Media Relations website at http://media.caltech.edu.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>