Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists discover why flies are so hard to swat

01.09.2008
Over the past two decades, Michael Dickinson has been interviewed by reporters hundreds of times about his research on the biomechanics of insect flight. One question from the press has always dogged him: Why are flies so hard to swat?

"Now I can finally answer," says Dickinson, the Esther M. and Abe M. Zarem Professor of Bioengineering at the California Institute of Technology (Caltech).

Using high-resolution, high-speed digital imaging of fruit flies (Drosophila melanogaster) faced with a looming swatter, Dickinson and graduate student Gwyneth Card have determined the secret to a fly's evasive maneuvering. Long before the fly leaps, its tiny brain calculates the location of the impending threat, comes up with an escape plan, and places its legs in an optimal position to hop out of the way in the opposite direction. All of this action takes place within about 100 milliseconds after the fly first spots the swatter.

"This illustrates how rapidly the fly's brain can process sensory information into an appropriate motor response," Dickinson says.

For example, the videos showed that if the descending swatter--actually, a 14-centimeter-diameter black disk, dropping at a 50-degree angle toward a fly standing at the center of a small platform--comes from in front of the fly, the fly moves its middle legs forward and leans back, then raises and extends its legs to push off backward. When the threat comes from the back, however, the fly (which has a nearly 360-degree field of view and can see behind itself) moves its middle legs a tiny bit backwards. With a threat from the side, the fly keeps its middle legs stationary, but leans its whole body in the opposite direction before it jumps.

"We also found that when the fly makes planning movements prior to take-off, it takes into account its body position at the time it first sees the threat," Dickinson says. "When it first notices an approaching threat, a fly's body might be in any sort of posture depending on what it was doing at the time, like grooming, feeding, walking, or courting. Our experiments showed that the fly somehow 'knows' whether it needs to make large or small postural changes to reach the correct preflight posture. This means that the fly must integrate visual information from its eyes, which tell it where the threat is approaching from, with mechanosensory information from its legs, which tells it how to move to reach the proper preflight pose."

The results offer new insight into the fly nervous system, and suggest that within the fly brain there is a map in which the position of the looming threat "is transformed into an appropriate pattern of leg and body motion prior to take off," Dickinson says. "This is a rather sophisticated sensory-to-motor transformation and the search is on to find the place in the brain where this happens," he says.

Dickinson's research also suggests an optimal method for actually swatting a fly. "It is best not to swat at the fly's starting position, but rather to aim a bit forward of that to anticipate where the fly is going to jump when it first sees your swatter," he says.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://pr.caltech.edu/media

Further reports about: Dickinson Drosophila melanogaster fly' fruit flies insect flight leg swat

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>