Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caltech scientists discover why flies are so hard to swat

Over the past two decades, Michael Dickinson has been interviewed by reporters hundreds of times about his research on the biomechanics of insect flight. One question from the press has always dogged him: Why are flies so hard to swat?

"Now I can finally answer," says Dickinson, the Esther M. and Abe M. Zarem Professor of Bioengineering at the California Institute of Technology (Caltech).

Using high-resolution, high-speed digital imaging of fruit flies (Drosophila melanogaster) faced with a looming swatter, Dickinson and graduate student Gwyneth Card have determined the secret to a fly's evasive maneuvering. Long before the fly leaps, its tiny brain calculates the location of the impending threat, comes up with an escape plan, and places its legs in an optimal position to hop out of the way in the opposite direction. All of this action takes place within about 100 milliseconds after the fly first spots the swatter.

"This illustrates how rapidly the fly's brain can process sensory information into an appropriate motor response," Dickinson says.

For example, the videos showed that if the descending swatter--actually, a 14-centimeter-diameter black disk, dropping at a 50-degree angle toward a fly standing at the center of a small platform--comes from in front of the fly, the fly moves its middle legs forward and leans back, then raises and extends its legs to push off backward. When the threat comes from the back, however, the fly (which has a nearly 360-degree field of view and can see behind itself) moves its middle legs a tiny bit backwards. With a threat from the side, the fly keeps its middle legs stationary, but leans its whole body in the opposite direction before it jumps.

"We also found that when the fly makes planning movements prior to take-off, it takes into account its body position at the time it first sees the threat," Dickinson says. "When it first notices an approaching threat, a fly's body might be in any sort of posture depending on what it was doing at the time, like grooming, feeding, walking, or courting. Our experiments showed that the fly somehow 'knows' whether it needs to make large or small postural changes to reach the correct preflight posture. This means that the fly must integrate visual information from its eyes, which tell it where the threat is approaching from, with mechanosensory information from its legs, which tells it how to move to reach the proper preflight pose."

The results offer new insight into the fly nervous system, and suggest that within the fly brain there is a map in which the position of the looming threat "is transformed into an appropriate pattern of leg and body motion prior to take off," Dickinson says. "This is a rather sophisticated sensory-to-motor transformation and the search is on to find the place in the brain where this happens," he says.

Dickinson's research also suggests an optimal method for actually swatting a fly. "It is best not to swat at the fly's starting position, but rather to aim a bit forward of that to anticipate where the fly is going to jump when it first sees your swatter," he says.

Kathy Svitil | EurekAlert!
Further information:

Further reports about: Dickinson Drosophila melanogaster fly' fruit flies insect flight leg swat

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>