Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists develop 'barcode chip' for cheap, fast blood tests

28.11.2008
A new "barcode chip" developed by researchers at the California Institute of Technology (Caltech) promises to revolutionize diagnostic medical testing. In less than 10 minutes, and using just a pinprick's worth of blood, the chip can measure the concentrations of dozens of proteins, including those that herald the presence of diseases like cancer and heart disease.

The device, known as the Integrated Blood-Barcode Chip, or IBBC, was developed by a group of Caltech researchers led by James R. Heath, the Elizabeth W. Gilloon Professor and professor of chemistry, along with postdoctoral scholar Rong Fan and graduate student Ophir Vermesh, and by Leroy Hood, president of the Institute for Systems Biology in Seattle, Washington.

An IBBC, described in a paper in the advance online edition of Nature Biotechnology, is about the size of a microscope slide and is made out of a glass substrate covered with silicone rubber. The chip's surface is molded to contain a microfluidics circuit--a system of microscopic channels through which the pinprick of blood is introduced, protein-rich blood plasma is separated from whole blood, and a panel of protein biomarkers is measured from the plasma.

The chip offers a significant improvement over the cost and speed of standard laboratory tests to analyze proteins in the blood. In traditional tests, one or more vials of blood are removed from a patient's arm and taken to a laboratory, where the blood is centrifuged to separate whole blood cells from the plasma. The plasma is then assayed for specific proteins. "The process is labor intensive, and even if the person doing the testing hurries, the tests will still take a few hours to complete," says Heath. A kit to test for a single diagnostic protein costs about $50.

"We wanted to dramatically lower the cost of such measurements, by orders of magnitude," he says. "We measure many proteins for the cost of one. Furthermore, if you reduce the time it takes for the test, the test is cheaper, since time is money. With our barcode chip, we can go from pinprick to results in less than 10 minutes."

A single chip can simultaneously test the blood from eight patients, and each test measures many proteins at once. The researchers reported on devices that could measure a dozen proteins from a fingerprick of blood, and their current assays are designed for significantly more proteins. "We are aiming to measure 100 proteins per fingerprick within a year or so. It's a pretty enabling technology," Heath says.

To perform the assay, a drop of blood is added to the IBBC's inlet, and then a slight pressure is applied, which forces the blood through a channel. As the blood flows, plasma is skimmed into narrow channels that branch off from the main channel. This part of the chip is designed as if it were a network of resistors, which optimizes plasma separation.

The plasma then flows across the "barcodes." The barcodes consist of a series of lines, each 20 micrometers across and patterned with a different antibody that allows it to capture a specific protein from the plasma passing over. When the barcode is "developed," the individual bars emit a red fluorescent glow, whose brightness depends upon the amount of protein captured.

In the Nature Biotechnology paper, the researchers used the chip to measure variations in the concentration of human chorionic gonadotropin (hCG), the hormone produced during pregnancy. "The concentration of this protein increases by about 100,000-fold as a woman goes through the pregnancy cycle, and we wanted to show that we could capture that whole concentration range through a single test," Heath says.

The scientists also used the barcode chip to analyze the blood of breast and prostate cancer patients for a number of proteins that serve as biomarkers for disease. The types and concentrations of the proteins vary from disease to disease and between different individuals. A woman with breast cancer, for example, will produce a different suite of biomarkers than will a man with prostate cancer, while a woman with an aggressive form of cancer may produce proteins that are different from a woman with a less-deadly cancer.

Those proteins can also change as a patient receives therapy. Thus, determining these biomarker profiles can allow doctors to create individualized treatment plans for their patients and improve outcomes. The ease and the speed with which results can be obtained using the IBBC also will potentially allow doctors to assess their patients' responses to drugs and to monitor how those responses evolve with time, much as a diabetic patient might use a blood glucose test to monitor insulin delivery.

The barcode chip is now being tested in human clinical trials on patients with glioblastoma, a common and aggressive form of brain tumor. The researchers are also using the chips in studies of healthy individuals, to determine how diet and exercise change the composition of the proteins in the blood.

Currently, the barcoded information is "read" with a common laboratory scanner that is also used for gene and protein expression studies. "But it should be very easy to design something like a supermarket UPC scanner to read the information," making the process even more user-friendly, says Fan, the first author on the paper.

"As personalized medicine develops, measurements of large panels of protein biomarkers are going to become important, but they are also going to have to be done very cheaply," Heath says. "It is our hope that these IBBCs will enable such inexpensive and multiplexed measurements."

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://pr.caltech.edu/media

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>