Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers revise long-held theory of fruit-fly development

21.12.2009
Research shows that the influence of a key transcription factor is less widespread than thought, and varies over time

For decades, science texts have told a simple and straightforward story about a particular protein—a transcription factor—that helps the embryo of the fruit fly, Drosophila melanogaster, pattern tissues in a manner that depends on the levels of this factor within individual cells.

"For 20 years, this system of patterning has been used in textbooks as a paradigm for patterning in embryos, controlled by transcription factors," says Angelike Stathopoulos, assistant professor of biology at the California Institute of Technology (Caltech).

Now Stathopoulos and her Caltech colleagues, reporting in the online edition of the Proceedings of the National Academy of Sciences (PNAS), have called that paradigm into question, revealing a tale that is both more complicated and potentially more interesting than the one previously described.

The football-shaped embryo of the fruit fly has a dorsal (back/top) side and a ventral (front/bottom) side. During development, the cells in each of these regions begin to differentiate and take on specific, specialized roles.

Those decisions are influenced, at least in part, by chemical signals in the cells' environment, including signals called transcription factors—proteins that, by promoting the transcription of particular DNA sequences, regulate whether specific genes are turned on or off.

In Drosophila, the textbooks said, decisions in the early embryo are made by a transcription factor called Dorsal (which, confusingly, is found primarily in the cells in the ventral part of the embryo, and is absent in those in the dorsal part). Dorsal was said to be the key determinant of the ultimate fate of the cells in which it is present—as long as it is present in high enough concentrations to be noticed by the nuclei.

"There's a threshold," says Caltech postdoctoral scholar Greg Reeves. "Depending on the level of the signal, the decision of whether to differentiate one way or another is made."

And the strength of the signal the nuclei are exposed to, he says, is determined at least in part by their position; the signal changes on a gradient along the dorsal-ventral axis of the embryo that goes from high to nearly nonexistent levels of the factor.

"The gradient sets up boundaries of gene expression," explains Reeves. "It's like a radio-tower signal; you can tell how far away you are from the tower by how clear a signal you receive. At some distance, you won't be able to hear the signal at all."

But if you look closely at the patterning that occurs in the Drosophila embryo, Stathopoulos notes, this theory that Dorsal is the main determinant of patterning falls short of explaining the whole process. That's because, as their study showed, some of the nuclei in the embryo are responding to a signal they shouldn't be able to hear.

"These are places where the levels of the factor flatline," she points out, "and yet you still have patterns forming there."

Why hadn't this disparity been seen before? Because previous measurements in the Drosophila embryo had looked at overall levels of Dorsal—at its levels not only in the nuclei, where the transcription factor does its work, but in the cytoplasm as well. Because cytoplasmic levels of Dorsal rise when nuclear levels fall, cells with little to no working transcription factor in the nucleus may still show significant levels of the factor overall, due to its presence in the cytoplasm. Thus, researchers have always believed that Dorsal signaling is critical in a large portion of the embryo.

The Caltech team—which included Stathopoulos, Reeves, and former Caltech graduate student Louisa Liberman, now at Duke University—showed in their PNAS paper that the actual signaling from nuclear Dorsal works over quite a short range. "We think, now, that it's only controlling half the patterning that goes on in these embryos," Stathopoulos says.

In their paper, the Caltech team looked not only at the nuclear levels of the transcription factor, but at how those levels change throughout the early stages of embryonic development. They found that Dorsal provides constantly changing positional information to the nuclei, raising the question of how such a dynamic signal could be interpreted.

"We've shown that, instead of a steady amount of signal telling the cells what to do, the signal changes over time," says Reeves.

Still, the researchers say that Dorsal clearly is critical for patterning in parts of the embryo. "It's just not controlling all of the domains all of the time," says Stathopoulos.

The researchers propose that the key to understanding patterning in Drosophila embryos is to identify other transcription factors that work with Dorsal to control patterning in dorsal regions. Even if the levels of Dorsal flatline here, these other factors may provide the necessary additional information cells need to decipher their relative positions. The group is actively searching for such transcription factors.

The work described in the PNAS paper, "Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila," was supported by grants from the National Institute of Health's National Institute of General Medical Sciences and the Jane Coffin Childs Memorial Fund for Medical Research.

The paper's abstract can be found at http://www.pnas.org/content/early/2009/12/15/0906227106.abstract

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>