Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers obtain first brain recordings from behaving fruit flies

15.02.2010
Research opens a new avenue for linking genes to behavior

Researchers at the California Institute of Technology (Caltech) have obtained the first recordings of brain-cell activity in an actively flying fruit fly.

The work—by Michael Dickinson, the Esther M. and Abe M. Zarem Professor of Bioengineering, with postdoctoral scholars Gaby Maimon and Andrew Straw—suggests that at least part of the brain of the fruit fly (Drosophila melanogaster) "is in a different and more sensitive state during flight than when the fly is quiescent," Dickinson says.

A paper describing the research appears February 14 in the advance online edition of Nature Neuroscience.

"Prior work on fruit flies has led to many important breakthroughs in biology. For example, the fact that genes reside on chromosomes and our understanding of how genes control development both emerged from experiments on fruit flies," Maimon says. "New research hopes to use these tiny insects to help determine how neurons give rise to complex behavior. This effort is helped by the fact that it is easy to manipulate the genes of fruit flies, but one problem remains: These insects are really, really tiny, which means it is very difficult to record from their brain during active behaviors such as flight."

"Researchers have recorded the neural-cell activity of fruit flies before, but only in restrained preparations—animals that had been stuck or glued down," Dickinson explains. "Gaby was able to develop a preparation where the animal is tethered"—its head clamped into place—"but free to flap its wings." By slicing off a patch of the hard cuticle covering the brain, "we were able to target our electrodes onto genetically marked neurons," he says.

A puff of air was used to spur the flies into flapping their wings, while electrodes measured the activity of the marked neurons and high-speed digital cameras simultaneously recorded the flies' behavior.

In particular, the researchers focused on those neurons in the fly's visual system that keep the animal flying stably during flight. "These cells basically help the fly detect when its body posture changes," Dickinson says. "The signals from these cells are thought to control tiny steering muscles that then change the pattern of wing motion and bring the animal back into equilibrium."

In their experiments, the researchers discovered that when the animals began to fly, the visual cells immediately ramped up their activity. "The neurons' responses to visual motion roughly double when the flies begin to fly, which suggests that the system is more sensitive during flight," Dickinson says. "The increase is very abrupt. It's not at all a subtle change, and so we suspect that there is a neurochemical quickly released during flight that sets the animal's brain in this different state."

Previous studies in locusts—which are far bigger and thus far easier to study—had suggested the existence of this effect. However, the genetics of locusts are not nearly as well understood as those of Drosophila, which has made it impossible to pinpoint the genetic basis for the phenomenon.

In Drosophila, Dickinson says, it now should be possible to "figure out specifically what causes the change in sensitivity. Is the system turned off when the fly is on the ground? What neurochemicals are involved? Now we can start to use the genetic tricks that are available in fruit flies to get a better idea of what is going on."

Maimon adds: "Our work on Drosophila is of general interest because sensory neurons in many species—including birds, rodents, and primates—change their response strength depending on the behavioral state of the animal, but why these changes in sensitivity take place is not entirely clear."

In addition, the researchers plan to use their tethered-flight system to record the activity of other types of cells, including olfactory and motor cells, to determine if these also behave differently during flight and when flies are at rest.

"The question is, 'Is the entire brain completely different in flight?'" Dickinson says. "We suspect that this phenomenon is not unique to the visual cells we have studied. Most cells care whether the animal is flying or not."

The work in the paper, "Active flight increases the gain of visual motion processing in Drosophila," was supported by the National Science Foundation and a Caltech Della Martin Fellowship.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>