Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caltech researchers find dual-use sexual attraction and population-control chemicals in nematodes

Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex.

Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.

The discovery, published online July 23 in the journal Nature, could lead to new ways to control parasitic nematodes, which affect the health of more than a billion people and each year cause billions of dollars in crop damage.

Caenorhabditis elegans worms have long been a favorite model organism among developmental biologists, in part because of their small size (1 mm long), simple nervous system, and ease of care. The normally soil-dwelling worms are almost always hermaphrodites--females that are capable of making sperm, with which they can fertilize their own eggs. About one in every 1000 worms is a true male.

... more about:
»Molecule »elegans »nematode

Researchers studying C. elegans had long noted that hermaphroditic worms, left to wander about in a culture plate, will secrete a chemical that strongly attracts males. When males are exposed to the chemical, dubbed "worm sweat" by C. elegans researchers, "males will act as if their desired mate is near, and start blindly feeling around to locate it," says molecular geneticist Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute.

Jagan Srinivasan, a postdoctoral research scholar at Caltech, Sternberg, and his colleagues at the University of Florida, the United States Department of Agriculture, and Cornell University, assayed and analyzed worm sweat and found that it consisted of a blend of three related chemicals, called ascarosides. The chemicals looked suspiciously like another compound previously known to be involved in triggering an alternative developmental state in the nematodes, a spore-like condition called the "dauer stage"--from the German word for "enduring"--that represents a form of worm population control.

"When worm larvae are stressed out and hungry and crowded," Sternberg says, "they enter the dauer stage." In this alternate state, the worm larvae can withstand harsh environmental conditions. "The dauer stage is important because it is the infective stage in a lot of parasitic nematodes," he says.

The scientists found that purified samples of the chemicals, dubbed ascr#2, ascr#3, and ascr#4, induced sexual excitement among males, but only when the chemicals were combined, and only when presented to the worms in very dilute form. At higher concentrations, 100 to 1000 times stronger, males were repelled, sexual reproduction ceased, and existing worm larvae entered their hibernating stage.

"This is the first glimpse into the chemical code that nematodes are using to communicate," says Sternberg. Adds Srinivasan, "It is the first time that two distinct and different life history traits--reproduction and developmental arrest--have been found to be regulated by the same family of molecules, suggesting a link, which we had not suspected, between the corresponding pathways."

The discovery offers hope for a solution to a global nematode scourge. Hundreds of thousands of nematode species occupy the earth, and many are pests or parasites whose activities cause disease or economic hardship, with damage amounting to billions of dollars per year. For example, hookworm, a parasitic nematode that lives in the small intestine of humans, is believed to infect one billion people worldwide and in developing countries is the leading cause of illnesses in babies, children, pregnant women, and malnourished individuals; the soybean cyst nematode, which attacks the roots of soybean plants, causes half a billion dollars worth of crop loss each year in the United States alone.

By decoding some of the signals that nematodes use to communicate, scientists may be able to offer new strategies to control the pests. One option could be to create chemical attractants derived from pheromones, similar to the pheromone-based substances that now are used to lure fruit flies and other bugs into traps. Alternatively, Sternberg says, compounds could be developed "that interfere with the chemical signaling involved in the reproductive process," thereby preventing the organism from multiplying.

Kathy Svitil | EurekAlert!
Further information:

Further reports about: Molecule elegans nematode

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>