Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers find dual-use sexual attraction and population-control chemicals in nematodes

01.08.2008
Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex.

Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.

The discovery, published online July 23 in the journal Nature, could lead to new ways to control parasitic nematodes, which affect the health of more than a billion people and each year cause billions of dollars in crop damage.

Caenorhabditis elegans worms have long been a favorite model organism among developmental biologists, in part because of their small size (1 mm long), simple nervous system, and ease of care. The normally soil-dwelling worms are almost always hermaphrodites--females that are capable of making sperm, with which they can fertilize their own eggs. About one in every 1000 worms is a true male.

... more about:
»Molecule »elegans »nematode

Researchers studying C. elegans had long noted that hermaphroditic worms, left to wander about in a culture plate, will secrete a chemical that strongly attracts males. When males are exposed to the chemical, dubbed "worm sweat" by C. elegans researchers, "males will act as if their desired mate is near, and start blindly feeling around to locate it," says molecular geneticist Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute.

Jagan Srinivasan, a postdoctoral research scholar at Caltech, Sternberg, and his colleagues at the University of Florida, the United States Department of Agriculture, and Cornell University, assayed and analyzed worm sweat and found that it consisted of a blend of three related chemicals, called ascarosides. The chemicals looked suspiciously like another compound previously known to be involved in triggering an alternative developmental state in the nematodes, a spore-like condition called the "dauer stage"--from the German word for "enduring"--that represents a form of worm population control.

"When worm larvae are stressed out and hungry and crowded," Sternberg says, "they enter the dauer stage." In this alternate state, the worm larvae can withstand harsh environmental conditions. "The dauer stage is important because it is the infective stage in a lot of parasitic nematodes," he says.

The scientists found that purified samples of the chemicals, dubbed ascr#2, ascr#3, and ascr#4, induced sexual excitement among males, but only when the chemicals were combined, and only when presented to the worms in very dilute form. At higher concentrations, 100 to 1000 times stronger, males were repelled, sexual reproduction ceased, and existing worm larvae entered their hibernating stage.

"This is the first glimpse into the chemical code that nematodes are using to communicate," says Sternberg. Adds Srinivasan, "It is the first time that two distinct and different life history traits--reproduction and developmental arrest--have been found to be regulated by the same family of molecules, suggesting a link, which we had not suspected, between the corresponding pathways."

The discovery offers hope for a solution to a global nematode scourge. Hundreds of thousands of nematode species occupy the earth, and many are pests or parasites whose activities cause disease or economic hardship, with damage amounting to billions of dollars per year. For example, hookworm, a parasitic nematode that lives in the small intestine of humans, is believed to infect one billion people worldwide and in developing countries is the leading cause of illnesses in babies, children, pregnant women, and malnourished individuals; the soybean cyst nematode, which attacks the roots of soybean plants, causes half a billion dollars worth of crop loss each year in the United States alone.

By decoding some of the signals that nematodes use to communicate, scientists may be able to offer new strategies to control the pests. One option could be to create chemical attractants derived from pheromones, similar to the pheromone-based substances that now are used to lure fruit flies and other bugs into traps. Alternatively, Sternberg says, compounds could be developed "that interfere with the chemical signaling involved in the reproductive process," thereby preventing the organism from multiplying.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Molecule elegans nematode

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>