Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers find dual-use sexual attraction and population-control chemicals in nematodes

01.08.2008
Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex.

Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.

The discovery, published online July 23 in the journal Nature, could lead to new ways to control parasitic nematodes, which affect the health of more than a billion people and each year cause billions of dollars in crop damage.

Caenorhabditis elegans worms have long been a favorite model organism among developmental biologists, in part because of their small size (1 mm long), simple nervous system, and ease of care. The normally soil-dwelling worms are almost always hermaphrodites--females that are capable of making sperm, with which they can fertilize their own eggs. About one in every 1000 worms is a true male.

... more about:
»Molecule »elegans »nematode

Researchers studying C. elegans had long noted that hermaphroditic worms, left to wander about in a culture plate, will secrete a chemical that strongly attracts males. When males are exposed to the chemical, dubbed "worm sweat" by C. elegans researchers, "males will act as if their desired mate is near, and start blindly feeling around to locate it," says molecular geneticist Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute.

Jagan Srinivasan, a postdoctoral research scholar at Caltech, Sternberg, and his colleagues at the University of Florida, the United States Department of Agriculture, and Cornell University, assayed and analyzed worm sweat and found that it consisted of a blend of three related chemicals, called ascarosides. The chemicals looked suspiciously like another compound previously known to be involved in triggering an alternative developmental state in the nematodes, a spore-like condition called the "dauer stage"--from the German word for "enduring"--that represents a form of worm population control.

"When worm larvae are stressed out and hungry and crowded," Sternberg says, "they enter the dauer stage." In this alternate state, the worm larvae can withstand harsh environmental conditions. "The dauer stage is important because it is the infective stage in a lot of parasitic nematodes," he says.

The scientists found that purified samples of the chemicals, dubbed ascr#2, ascr#3, and ascr#4, induced sexual excitement among males, but only when the chemicals were combined, and only when presented to the worms in very dilute form. At higher concentrations, 100 to 1000 times stronger, males were repelled, sexual reproduction ceased, and existing worm larvae entered their hibernating stage.

"This is the first glimpse into the chemical code that nematodes are using to communicate," says Sternberg. Adds Srinivasan, "It is the first time that two distinct and different life history traits--reproduction and developmental arrest--have been found to be regulated by the same family of molecules, suggesting a link, which we had not suspected, between the corresponding pathways."

The discovery offers hope for a solution to a global nematode scourge. Hundreds of thousands of nematode species occupy the earth, and many are pests or parasites whose activities cause disease or economic hardship, with damage amounting to billions of dollars per year. For example, hookworm, a parasitic nematode that lives in the small intestine of humans, is believed to infect one billion people worldwide and in developing countries is the leading cause of illnesses in babies, children, pregnant women, and malnourished individuals; the soybean cyst nematode, which attacks the roots of soybean plants, causes half a billion dollars worth of crop loss each year in the United States alone.

By decoding some of the signals that nematodes use to communicate, scientists may be able to offer new strategies to control the pests. One option could be to create chemical attractants derived from pheromones, similar to the pheromone-based substances that now are used to lure fruit flies and other bugs into traps. Alternatively, Sternberg says, compounds could be developed "that interfere with the chemical signaling involved in the reproductive process," thereby preventing the organism from multiplying.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Molecule elegans nematode

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>