Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers create the first artificial neural network out of DNA

21.07.2011
Molecular soup exhibits brainlike behavior

Artificial intelligence has been the inspiration for countless books and movies, as well as the aspiration of countless scientists and engineers.

Researchers at the California Institute of Technology (Caltech) have now taken a major step toward creating artificial intelligence—not in a robot or a silicon chip, but in a test tube. The researchers are the first to have made an artificial neural network out of DNA, creating a circuit of interacting molecules that can recall memories based on incomplete patterns, just as a brain can.

"The brain is incredible," says Lulu Qian, a Caltech senior postdoctoral scholar in bioengineering and lead author on the paper describing this work, published in the July 21 issue of the journal Nature. "It allows us to recognize patterns of events, form memories, make decisions, and take actions. So we asked, instead of having a physically connected network of neural cells, can a soup of interacting molecules exhibit brainlike behavior?"

The answer, as the researchers show, is yes.

Consisting of four artificial neurons made from 112 distinct DNA strands, the researchers' neural network plays a mind-reading game in which it tries to identify a mystery scientist. The researchers "trained" the neural network to "know" four scientists, whose identities are each represented by a specific, unique set of answers to four yes-or-no questions, such as whether the scientist was British.

After thinking of a scientist, a human player provides an incomplete subset of answers that partially identifies the scientist. The player then conveys those clues to the network by dropping DNA strands that correspond to those answers into the test tube. Communicating via fluorescent signals, the network then identifies which scientist the player has in mind. Or, the network can "say" that it has insufficient information to pick just one of the scientists in its memory or that the clues contradict what it has remembered. The researchers played this game with the network using 27 different ways of answering the questions (out of 81 total combinations), and it responded correctly each time.

This DNA-based neural network demonstrates the ability to take an incomplete pattern and figure out what it might represent—one of the brain's unique features. "What we are good at is recognizing things," says coauthor Jehoshua "Shuki" Bruck, the Gordon and Betty Moore Professor of Computation and Neural Systems and Electrical Engineering. "We can recognize things based on looking only at a subset of features." The DNA neural network does just that, albeit in a rudimentary way.

Biochemical systems with artificial intelligence—or at least some basic, decision-making capabilities—could have powerful applications in medicine, chemistry, and biological research, the researchers say. In the future, such systems could operate within cells, helping to answer fundamental biological questions or diagnose a disease. Biochemical processes that can intelligently respond to the presence of other molecules could allow engineers to produce increasingly complex chemicals or build new kinds of structures, molecule by molecule.

"Although brainlike behaviors within artificial biochemical systems have been hypothesized for decades," Qian says, "they appeared to be very difficult to realize."

The researchers based their biochemical neural network on a simple model of a neuron, called a linear threshold function. The model neuron receives input signals, multiplies each by a positive or negative weight, and only if the weighted sum of inputs surpass a certain threshold does the neuron fire, producing an output. This model is an oversimplification of real neurons, says paper coauthor Erik Winfree, professor of computer science, computation and neural systems, and bioengineering. Nevertheless, it's a good one. "It has been an extremely productive model for exploring how the collective behavior of many simple computational elements can lead to brainlike behaviors, such as associative recall and pattern completion."

To build the DNA neural network, the researchers used a process called a strand-displacement cascade. Previously, the team developed this technique to create the largest and most complex DNA circuit yet, one that computes square roots.

This method uses single and partially double-stranded DNA molecules. The latter are double helices, one strand of which sticks out like a tail. While floating around in a water solution, a single strand can run into a partially double-stranded one, and if their bases (the letters in the DNA sequence) are complementary, the single strand will grab the double strand's tail and bind, kicking off the other strand of the double helix. The single strand thus acts as an input while the displaced strand acts as an output, which can then interact with other molecules.

Because they can synthesize DNA strands with whatever base sequences they want, the researchers can program these interactions to behave like a network of model neurons. By tuning the concentrations of every DNA strand in the network, the researchers can teach it to remember the unique patterns of yes-or-no answers that belong to each of the four scientists. Unlike with some artificial neural networks that can directly learn from examples, the researchers used computer simulations to determine the molecular concentration levels needed to implant memories into the DNA neural network.

While this proof-of-principle experiment shows the promise of creating DNA-based networks that can—in essence—think, this neural network is limited, the researchers say. The human brain consists of 100 billion neurons, but creating a network with just 40 of these DNA-based neurons—ten times larger than the demonstrated network—would be a challenge, according to the researchers. Furthermore, the system is slow; the test-tube network took eight hours to identify each mystery scientist. The molecules are also used up—unable to detach and pair up with a different strand of DNA—after completing their task, so the game can only be played once. Perhaps in the future, a biochemical neural network could learn to improve its performance after many repeated games, or learn new memories from encountering new situations. Creating biochemical neural networks that operate inside the body—or even just inside a cell on a Petri dish—is also a long way away, since making this technology work in vivo poses an entirely different set of challenges.

Beyond technological challenges, engineering these systems could also provide indirect insight into the evolution of intelligence. "Before the brain evolved, single-celled organisms were also capable of processing information, making decisions, and acting in response to their environment," Qian explains. The source of such complex behaviors must have been a network of molecules floating around in the cell. "Perhaps the highly evolved brain and the limited form of intelligence seen in single cells share a similar computational model that's just programmed in different substrates."

"Our paper can be interpreted as a simple demonstration of neural-computing principles at the molecular and intracellular levels," Bruck adds. "One possible interpretation is that perhaps these principles are universal in biological information processing."

View the researchers' videos (part 1, part 2) that explain their work.

The research described in the Nature paper, "Neural network computation with DNA strand displacement cascades," is supported by a National Science Foundation grant to the Molecular Programming Project and by the Human Frontiers Science Program.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>