Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers build largest biochemical circuit out of small synthetic DNA molecules

03.06.2011
In many ways, life is like a computer. An organism's genome is the software that tells the cellular and molecular machinery—the hardware—what to do.

But instead of electronic circuitry, life relies on biochemical circuitry—complex networks of reactions and pathways that enable organisms to function. Now, researchers at the California Institute of Technology (Caltech) have built the most complex biochemical circuit ever created from scratch, made with DNA-based devices in a test tube that are analogous to the electronic transistors on a computer chip.

Engineering these circuits allows researchers to explore the principles of information processing in biological systems, and to design biochemical pathways with decision-making capabilities. Such circuits would give biochemists unprecedented control in designing chemical reactions for applications in biological and chemical engineering and industries. For example, in the future a synthetic biochemical circuit could be introduced into a clinical blood sample, detect the levels of a variety of molecules in the sample, and integrate that information into a diagnosis of the pathology.

"We're trying to borrow the ideas that have had huge success in the electronic world, such as abstract representations of computing operations, programming languages, and compilers, and apply them to the biomolecular world," says Lulu Qian, a senior postdoctoral scholar in bioengineering at Caltech and lead author on a paper published in the June 3 issue of the journal Science.

Along with Erik Winfree, Caltech professor of computer science, computation and neural systems, and bioengineering, Qian used a new kind of DNA-based component to build the largest artificial biochemical circuit ever made. Previous lab-made biochemical circuits were limited because they worked less reliably and predictably when scaled to larger sizes, Qian explains. The likely reason behind this limitation is that such circuits need various molecular structures to implement different functions, making large systems more complicated and difficult to debug. The researchers' new approach, however, involves components that are simple, standardized, reliable, and scalable, meaning that even bigger and more complex circuits can be made and still work reliably.

"You can imagine that in the computer industry, you want to make better and better computers," Qian says. "This is our effort to do the same. We want to make better and better biochemical circuits that can do more sophisticated tasks, driving molecular devices to act on their environment."

To build their circuits, the researchers used pieces of DNA to make so-called logic gates—devices that produce on-off output signals in response to on-off input signals. Logic gates are the building blocks of the digital logic circuits that allow a computer to perform the right actions at the right time. In a conventional computer, logic gates are made with electronic transistors, which are wired together to form circuits on a silicon chip. Biochemical circuits, however, consist of molecules floating in a test tube of salt water. Instead of depending on electrons flowing in and out of transistors, DNA-based logic gates receive and produce molecules as signals. The molecular signals travel from one specific gate to another, connecting the circuit as if they were wires.

Winfree and his colleagues first built such a biochemical circuit in 2006. In this work, DNA signal molecules connected several DNA logic gates to each other, forming what's called a multilayered circuit. But this earlier circuit consisted of only 12 different DNA molecules, and the circuit slowed down by a few orders of magnitude when expanded from a single logic gate to a five-layered circuit. In their new design, Qian and Winfree have engineered logic gates that are simpler and more reliable, allowing them to make circuits at least five times larger.

Their new logic gates are made from pieces of either short, single-stranded DNA or partially double-stranded DNA in which single strands stick out like tails from the DNA's double helix. The single-stranded DNA molecules act as input and output signals that interact with the partially double-stranded ones.

"The molecules are just floating around in solution, bumping into each other from time to time," Winfree explains. "Occasionally, an incoming strand with the right DNA sequence will zip itself up to one strand while simultaneously unzipping another, releasing it into solution and allowing it to react with yet another strand." Because the researchers can encode whatever DNA sequence they want, they have full control over this process. "You have this programmable interaction," he says.

Qian and Winfree made several circuits with their approach, but the largest—containing 74 different DNA molecules—can compute the square root of any number up to 15 (technically speaking, any four-bit binary number) and round down the answer to the nearest integer. The researchers then monitor the concentrations of output molecules during the calculations to determine the answer. The calculation takes about 10 hours, so it won't replace your laptop anytime soon. But the purpose of these circuits isn't to compete with electronics; it's to give scientists logical control over biochemical processes.

Their circuits have several novel features, Qian says. Because reactions are never perfect—the molecules don't always bind properly, for instance—there's inherent noise in the system. This means the molecular signals are never entirely on or off, as would be the case for ideal binary logic. But the new logic gates are able to handle this noise by suppressing and amplifying signals—for example, boosting a signal that's at 80 percent, or inhibiting one that's at 10 percent, resulting in signals that are either close to 100 percent present or nonexistent.

All the logic gates have identical structures with different sequences. As a result, they can be standardized, so that the same types of components can be wired together to make any circuit you want. What's more, Qian says, you don't have to know anything about the molecular machinery behind the circuit to make one. If you want a circuit that, say, automatically diagnoses a disease, you just submit an abstract representation of the logic functions in your design to a compiler that the researchers provide online, which will then translate the design into the DNA components needed to build the circuit. In the future, an outside manufacturer can then make those parts and give you the circuit, ready to go.

The circuit components are also tunable. By adjusting the concentrations of the types of DNA, the researchers can change the functions of the logic gates. The circuits are versatile, featuring plug-and-play components that can be easily reconfigured to rewire the circuit. The simplicity of the logic gates also allows for more efficient techniques that synthesize them in parallel.

"Like Moore's Law for silicon electronics, which says that computers are growing exponentially smaller and more powerful every year, molecular systems developed with DNA nanotechnology have been doubling in size roughly every three years," Winfree says. Qian adds, "The dream is that synthetic biochemical circuits will one day achieve complexities comparable to life itself."

The research described in the Science paper, "Scaling up digital circuit computation with DNA strand displacement cascades," is supported by a National Science Foundation grant to the Molecular Programming Project and by the Human Frontier Science Program.

Marcus Woo | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>