Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech engineers build first-ever multi-input 'plug-and-play' synthetic RNA device

21.10.2008
Could one day be used to detect tumor cells or create targeted gene therapies

Engineers from the California Institute of Technology (Caltech) have created a "plug-and-play" synthetic RNA device--a sort of eminently customizable biological computer--that is capable of taking in and responding to more than one biological or environmental signal at a time.

In the future, such devices could have a multitude of potential medical applications, including being used as sensors to sniff out tumor cells or determine when to turn modified genes on or off during cancer therapy.

A synthetic RNA device is a biological device that uses engineered modular components made of RNA nucleotides to perform a specific function--for instance, to detect and respond to biochemical signals inside a cell or in its immediate environment.

Created by Caltech's Christina Smolke, assistant professor of chemical engineering, and Maung Nyan Win, postdoctoral scholar in chemical engineering, the device is made up of modules comprising the RNA-based biological equivalents of engineering's sensors, actuators, and information transmitters. These individual components can be combined in a variety of different ways to create a device that can both detect and respond to what could conceivably be an almost infinite number of environmental and cellular signals.

This modular device processes these inputs in a manner almost identical to the logic gates used in computing; it can perform AND, NOR, NAND, and OR computations, and can perform signal filtering and signal gain operations. Smolke and Win's creation is the first RNA device that can handle more than one incoming piece of biological information. "There's been a lot of work done in single-input devices," notes Smolke. "But this is the first demonstration that a multi-input RNA device is possible."

Their work was published in the October 17 issue of the journal Science.

The modular--or plug-and-play--nature of the device's design also means that it can be easily modified to suit almost any need. "Scientists won't have to redesign their system every time they want the RNA device to take on a new function," Smolke explains. "This modular framework allows you to quickly put a device together, then just as easily swap out the components for other ones and get a completely different kind of computation. We could generate huge libraries of well-defined sensors and assemble many different tailored devices from such component libraries."

Although the work in the Science paper was done in yeast cells, Smolke says they have already shown that they can translate to mammalian cells as well. This makes it possible to consider using these devices in a wide variety of medical applications.

For instance, ongoing work in Smolke's laboratory is looking at the packaging of these RNA devices--configured with the appropriate sensor modules--in human T cells. The synthetic device would literally be placed within the cell to detect certain signals--say, one or more particular biochemical markers that are given off by tumor cells. If those biomarkers were present, the RNA device would signal the T cell to spring into action against the putative tumor cell.

Similarly, an RNA device could be bundled alongside a modified gene as part of a targeted gene therapy package. One of the problems gene therapy faces today is its lack of specificity--it's hard to make sure a modified gene meant to fix a problem in the liver reaches or is inserted in only liver cells. But an RNA device, Smolke says, could be customized to detect the unique biomarkers of a liver cell--or, better yet, of a diseased liver cell--and only then give the modified gene the go-ahead to do its stuff.

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu
http://www.che.caltech.edu/groups/cds/index.htm
http://pr.caltech.edu/media

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>