Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech chemists devise chemical reaction that holds promise for new drug development

12.01.2012
A team of researchers at the California Institute of Technology (Caltech) has devised a new method for making complex molecules.

The reaction they have come up with should enable chemists to synthesize new varieties of a whole subclass of organic compounds called nitrogen-containing heterocycles, thus opening up new avenues for the development of novel pharmaceuticals and natural products ranging from chemotherapeutic compounds to bioactive plant materials such as morphine.

The team—led by Brian Stoltz, the Ethel Wilson Bowles and Robert Bowles Professor of Chemistry, and Doug Behenna, a scientific researcher—used a suite of specialized robotic tools in the Caltech Center for Catalysis and Chemical Synthesis to find the optimal conditions and an appropriate catalyst to drive this particular type of reaction, known as an alkylation, because it adds an alkyl group (a group of carbon and hydrogen atoms) to the compound. The researchers describe the reaction in a recent advance online publication of a paper in Nature Chemistry.

"We think it's going to be a highly enabling reaction, not only for preparing complex natural products, but also for making pharmaceutical substances that include components that were previously very challenging to make," Stoltz says. "This has suddenly made them quite easy to make, and it should allow medicinal chemists to access levels of complexity they couldn't previously access."

The reaction creates compounds called heterocycles, which involve cyclic groups of carbon and nitrogen atoms. Such nitrogen-containing heterocycles are found in many natural products and pharmaceuticals, as well as in many synthetic polymers. In addition, the reaction manages to form carbon-carbon bonds at sites where some of the carbon atoms are essentially hidden, or blocked, by larger nearby components.

"Making carbon-carbon bonds is hard, but that's what we need to make the complicated structures we're after," Stoltz says. "We're taking that up another notch by making carbon-carbon bonds in really challenging scenarios. We're making carbon centers that have four other carbon groups around them, and that's very hard to do."

The vast majority of pharmaceuticals being made today do not include such congested carbon centers, Stoltz says—not so much because they would not be effective compounds, but because they have been so difficult to make. "But now," he says, "we've made it very easy to make those very hindered centers, even in compounds that contain nitrogen. And that should give pharmaceutical companies new possibilities that they previously couldn't consider."

Perhaps the most important feature of the reaction is that it yields almost 100 percent of just one version of its product. This is significant because many organic compounds exist in two distinct versions, or enantiomers, each having the same chemical formula and bond structure as the other, but with functional groups in opposite positions in space, making them mirror images of each other. One version can be thought of as right-handed, the other as left-handed.

The problem is that there is often a lock-and-key interaction between our bodies and the compounds that act upon them—only one of the two possible hands of a compound can "shake hands" and fit appropriately. In fact, one version will often have a beneficial effect on the body while the other will have a completely different and sometimes detrimental effect. Therefore, it is important to be able to selectively produce the compound with the desired handedness. For this reason, the FDA has increasingly required that the molecules in a particular drug be present in just one form.

"So not only are we making tricky carbon-carbon bonds, we're also making them such that the resulting products have a particular, desired handedness," Stoltz says. "This was the culmination of six years of work. There was essentially no way to make these compounds before, so to all of a sudden be able to do it and with perfect selectivity… that's pretty awesome."

In addition to Stoltz and Behenna, other authors on the paper, "Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams," include Yiyang Liu, Jimin Kim, David White, and Scott Virgil of Caltech, and Taiga Yurino, who visited the Stoltz lab on a fellowship supported by the Japan Society for the Promotion of Science. The work was supported by the King Abdullah University of Science and Technology, the NIH-NIGMS, the Gordon and Betty Moore Foundation, Amgen, Abbott, and Boehringer Ingelheim.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>