Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech chemists say antibody surrogates are just a 'click' away

14.07.2009
Chemists at the California Institute of Technology (Caltech) and the Scripps Research Institute have developed an innovative technique to create cheap but highly stable chemicals that have the potential to take the place of the antibodies used in many standard medical diagnostic tests.

James R. Heath, the Elizabeth W. Gilloon Professor and professor of chemistry, along with K. Barry Sharpless, the W. M. Keck Professor of Chemistry at the Scripps Research Institute and winner of the 2001 Nobel Prize in Chemistry, and their colleagues, describe the new technique in the latest issue of Angewandte Chemie, the leading European journal of chemistry.

Last year, Heath and his colleagues announced the development of the Integrated Blood-Barcode Chip, a diagnostic medical device, about the size of a microscope slide, which can separate and analyze dozens of proteins using just a pinprick of blood. The barcode chip employed antibodies, proteins utilized by the immune system to identify, bind to, and remove particular foreign compounds, such as bacteria and viruses—or other proteins.

"The thing that limits us in being able to go to, say, 200 proteins in the barcode chip is that the antibodies that you use to detect the proteins are unstable and expensive," says Heath. "We have been frustrated with antibodies for a long time, so what we wanted to be able to do was develop antibody equivalents—what we call 'protein capture agents'—that can bind to a particular protein with very high affinity and selectivity, and that pass the following test: you put a powder of them in your car trunk in August in Pasadena, and you come back a year later and they still work."

In the new work, Heath and his colleagues, including Caltech graduate student Heather D. Agnew, the first author on the Angewandte paper, have developed a protocol to quickly and cheaply make such highly stable compounds, which are composed of short chains of amino acids, or peptides. "I actually traveled to Chicago with a vial of my capture agents as airline carry-on luggage, and came back with it, and the reagent still worked," says Agnew.

The technique makes use of the "in situ click chemistry" method, introduced by Sharpless in 2001, in which chemicals are created by joining—or "clicking"—smaller subunits together.

To create a capture agent for a particular protein, the scientists devised a stepwise approach in which the first subunit of the capture agent is identified, and that unit, plus the protein, is used to identify the second subunit, and so on. For the first subunit, a fluorescent label is added to the protein, which is then incubated with a bead-based library of tens of millions of short-chain peptides, representing all the potential building blocks for the capture agent. When one of those peptides binds to the protein of interest, the fluorescent label is visualized on the bead (red, blue, or green, depending on the type of label), allowing the linked protein–peptide complex to be identified.

That first peptide—which is about a third of the length of the final capture agent the scientists are trying to make—is then isolated, purified, and modified on one end by the addition of a chemical group called an alkyne. This is the anchor peptide, which is then incubated, together with the same protein, with the bead-based library. The bead-based library now contains peptides that have been chemically modified to contain an azide group at one end. The alkyne group on the added peptide can potentially chemically react with the azide group of the library's peptides, to create a new peptide that is now two segments long.

However, the reaction can only occur when the second peptide comes into close contact with the first on the surface of the target protein, which means that both must have affinity for that protein; essentially, the protein itself builds an appropriate capture agent. The two-segment-long peptide is then isolated and purified, "and then we modify the end of THAT with an alkyne, and add it back to the library, to produce a three-segment peptide, which is long enough to be both selective for and specific to the target protein," Heath says.

"What Heath has shown now is that in several iterations, a high-affinity ligand for a protein can be created from blocks that do not bind to the protein all that well; the trick is to repeat the in situ screen several times, and the binding improves with every iteration," Sharpless says.

"This is about as simple a type of chemistry as you can imagine," says Heath. The process, he says, makes "trivial" the "Herculean task of finding molecules that bind selectively and with high affinity to particular proteins. I see no technical reason it couldn't replace any antibody."

The paper, "Iterative in situ Click Chemistry Creates Antibody-Like Protein Capture Agents," was published in the June 22 issue of Angewandte Chemie, and highlighted in an editorial in the June issue of Nature Chemistry. The other coauthors are, at Caltech, Rosemary D. Rohde, Steven W. Millward, Arundhati Nag, Woon-Seok Yeo, Abdul Ahad Tariq, Russell J. Krom, and Vanessa M. Burns; and, at the Scripps Research Institute, Jason E. Hein, Suresh M. Pitram, and Valery V. Fokin.

The work at Caltech was funded by the National Cancer Institute and by a subcontract from the MITRE Corporation.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>