Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caltech biologists find optimistic worms are ready for rapid recovery

For the tiny soil-dwelling nematode worm Caenorhabditis elegans, life is usually a situation of feast or famine.

Researchers at the California Institute of Technology (Caltech) have found that this worm has evolved a surprisingly optimistic genetic strategy to cope with these disparate conditions--one that could eventually point the way to new treatments for a host of human diseases caused by parasitic worms.

As reported in a paper published in the February 26 issue of Science Express, Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute, along with postdoctoral scholar L. Ryan Baugh, looked at the worms' genetic response to conditions of scarcity and plenty.

In dozens of batches of the worms, consisting of tens of millions of individuals, Baugh, now an assistant professor at Duke University, synchronized hatching, so that all of the animals in each batch emerged from their eggs at the same time.

Some of the hatched worms were allowed to develop under conditions with scarce nutrients, and others with plentiful nutrients. At precise time intervals (3, 6, 9, 12, and 15 hours after hatching), subsets of both populations were killed en masse and ground up. Their messenger RNA--the genetic material that is produced upon the activation of genes and then translated to produce proteins--was harvested and analyzed at Caltech's Jacobs Genetics and Genomics Laboratory, a specialized facility designed to conduct large-scale genetic analyses.

In this way, the researchers measured the expression of every one of the worms' approximately 20,000 genes, to determine how that expression differed depending on food availability.

"We also did an experiment in which we took the starved worms and refed them, and took the fed worms and starved them, to see how rapid their response was to the changing conditions," Sternberg says.

The researchers found that the worms responded far more rapidly to being fed than being starved. Being fed also caused the activation of a far greater number of genes than did starvation. For example, three hours of feeding worm larvae that had previously been starved caused the activation of 381 genes, while starving formerly fed worm larvae for three hours caused the activation of only 56 genes.

In addition, the research revealed that as many genes are involved in the worms' response to nutrition as are involved in their overall development. Many of the genes that play a role in that nutritional response have to do with energy metabolism, and in changing the way the animals utilize and store energy.

"It looks like C. elegans is primed to respond faster to better conditions. It is optimistic," Sternberg says. "These worms live, most of the time, in scarcity. They are facing bad conditions--that is, no food--most of the time. Probably they've evolved to take advantage when times get better for a brief period. They grow and reproduce."

The worms' quick response to food appears to be controlled by a vital cellular protein called RNA Polymerase II (RNA Pol II), which is responsible for transcribing DNA into mRNA. In a separate experiment, Sternberg and his colleagues found that RNA Pol II accumulates on genes that respond rapidly to being fed, but in advance of that feeding.

"We speculate that this polymerase accumulation is part of the way in which they can respond so quickly. It's already engaged, ready to go, ready to send out the message. It's like having Paul Revere on the North Shore, ready to ride, when the food comes," Sternberg says.

"It is kind of interesting in hard economic times to think whether we can learn anything from this organism, in terms of being optimistic or pessimistic. Maybe the take-home message is that sometimes when you are faced with scarcity, you should still be optimistic."

Sternberg speculates that other nematodes, including the parasitic worms that cause elephantiasis in humans, and other lymphatic filarial diseases, may also go through similar transitions in nutrition as they transition from one host (say, a mosquito) to another (a human). Those transitions may be mediated by a similar accumulation of RNA Pol II on particular genes. Identifying those genes could provide potential targets for new types of therapeutic drugs.

Kathy Svitil | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>