Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When calculating cell-growth thermodynamics, reconsider using the Gibbs free energy equation

10.06.2013
A forthcoming article in The Quarterly Review of Biology provides the basis for an argument against using the Gibbs free energy equation to accurately determine the thermodynamics of microbial growth.

Microbial growth is a biological process that has been previously treated as a chemical reaction operating in accord with the Gibbs free energy equation, developed during the 1870s. The heat of yeast growth was the first to be measured by direct calorimetry, in 1856. However, the full application of the Gibbs equation to microbial growth did not occur until 1997, with the experimental measurement of yeast cell entropy.

Subsequent investigations showed that the quantity of absorbed thermal energy for solid substances had two values, depending on how it was calculated. Because there can be only one correct value at a given temperature, Dr. Edwin H. Battley, emeritus of Stony Brook University and recipient of the International Society for Biological Calorimetry’s Dubrunfaut Award (1994) and Lavoisier Medal (2010), examined the use of the Gibbs free energy equation to accurately determine the change in energy that accompanies cellular growth.

In many systems, the values for some variables cannot be determined experimentally and so must be calculated from theoretically derived values. The free energy change accompanying cellular growth cannot be directly measured but, if the heat of growth can be measured and the entropy change accompanying growth can be calculated indirectly from heat measurements, the free energy change can be calculated using the Gibbs free energy equation.

The basis for Battley’s review is in the observation of an apparent discrepancy between the amounts of growth obtained when S. cerevisiae was grown on glucose in aerobic or anaerobic conditions. Assuming it is the change in the Gibbs energy that drives the reactions that occur in both conditions, it is expected that the amount of growth would be proportional to the amount of nonthermal energy initially available and there would be 13.2 times more growth aerobically than anaerobically. However, when the growth for these two systems was measured turbidometrically, this value was found to be only 3.4. It is clear that a discrepancy exists between what is theoretically expected and what is experimentally determined.

Using results of earlier studies, Battley devised a different equation to calculate the thermodynamics of microbial growth. This involves using a different mathematical procedure to calculate enthalpy values for absorbed thermal energy exchange. As a consequence, values for entropy used for this purpose are removed. He found that the appl­­ication of this equation (which he calls the Battley free energy equation) achieved values different from those obtained using the Gibbs free energy equation for the same system. Because the Battley free energy equation uses an absorbed thermal energy variable that is easier to understand in the context of the real-world system in which microbes exist, Battley argues that his free energy equation more realistically represents real-world conditions, and in a way that is more simple and parsimonious to calculate. As such, it is superior for determining the thermodynamics of microbial growth than is the Gibbs free energy equation.

Battley, Edwin H. “A Theoretical Study of the Thermodynamics of Microbial Growth Using Saccharomyces cerevisiae and a Different Free Energy Equation.” Quarterly Review of Biology Vol.88, No. 2 (June 2013).

The Quarterly Review of Biology (http://journals.uchicago.edu/QRB), the premier review journal in biology, has presented insightful historical, philosophical, and technical treatments of important biological topics since 1926. The QRB publishes outstanding review articles of generous length that are guided by an expansive, inclusive, and often humanistic understanding of biology. Beyond the core biological sciences, the QRB is also an important review journal for scholars in related areas, including policy studies and the history and philosophy of science.

Emily Murphy | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>