Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When calculating cell-growth thermodynamics, reconsider using the Gibbs free energy equation

A forthcoming article in The Quarterly Review of Biology provides the basis for an argument against using the Gibbs free energy equation to accurately determine the thermodynamics of microbial growth.

Microbial growth is a biological process that has been previously treated as a chemical reaction operating in accord with the Gibbs free energy equation, developed during the 1870s. The heat of yeast growth was the first to be measured by direct calorimetry, in 1856. However, the full application of the Gibbs equation to microbial growth did not occur until 1997, with the experimental measurement of yeast cell entropy.

Subsequent investigations showed that the quantity of absorbed thermal energy for solid substances had two values, depending on how it was calculated. Because there can be only one correct value at a given temperature, Dr. Edwin H. Battley, emeritus of Stony Brook University and recipient of the International Society for Biological Calorimetry’s Dubrunfaut Award (1994) and Lavoisier Medal (2010), examined the use of the Gibbs free energy equation to accurately determine the change in energy that accompanies cellular growth.

In many systems, the values for some variables cannot be determined experimentally and so must be calculated from theoretically derived values. The free energy change accompanying cellular growth cannot be directly measured but, if the heat of growth can be measured and the entropy change accompanying growth can be calculated indirectly from heat measurements, the free energy change can be calculated using the Gibbs free energy equation.

The basis for Battley’s review is in the observation of an apparent discrepancy between the amounts of growth obtained when S. cerevisiae was grown on glucose in aerobic or anaerobic conditions. Assuming it is the change in the Gibbs energy that drives the reactions that occur in both conditions, it is expected that the amount of growth would be proportional to the amount of nonthermal energy initially available and there would be 13.2 times more growth aerobically than anaerobically. However, when the growth for these two systems was measured turbidometrically, this value was found to be only 3.4. It is clear that a discrepancy exists between what is theoretically expected and what is experimentally determined.

Using results of earlier studies, Battley devised a different equation to calculate the thermodynamics of microbial growth. This involves using a different mathematical procedure to calculate enthalpy values for absorbed thermal energy exchange. As a consequence, values for entropy used for this purpose are removed. He found that the appl­­ication of this equation (which he calls the Battley free energy equation) achieved values different from those obtained using the Gibbs free energy equation for the same system. Because the Battley free energy equation uses an absorbed thermal energy variable that is easier to understand in the context of the real-world system in which microbes exist, Battley argues that his free energy equation more realistically represents real-world conditions, and in a way that is more simple and parsimonious to calculate. As such, it is superior for determining the thermodynamics of microbial growth than is the Gibbs free energy equation.

Battley, Edwin H. “A Theoretical Study of the Thermodynamics of Microbial Growth Using Saccharomyces cerevisiae and a Different Free Energy Equation.” Quarterly Review of Biology Vol.88, No. 2 (June 2013).

The Quarterly Review of Biology (, the premier review journal in biology, has presented insightful historical, philosophical, and technical treatments of important biological topics since 1926. The QRB publishes outstanding review articles of generous length that are guided by an expansive, inclusive, and often humanistic understanding of biology. Beyond the core biological sciences, the QRB is also an important review journal for scholars in related areas, including policy studies and the history and philosophy of science.

Emily Murphy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>