Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can cacti 'escape' underground in high temperatures?

25.11.2010
How a certain species will potentially handle global warming

In the scorching summer heat of the Chihuahuan Desert in southwest Texas, air temperatures can hover around 97°F (36°C) while at the surface of the soil temperatures can exceed 158°F (70°C).


A \"living rock\" cactus (Ariocarpus fissuratus) in a large container on the roof of the biology building of Occidental College, Los Angeles, in June 2008 after 8 days of high temperatures. This particular plants was embedded in sandy soil with surface rocks. Scale bar = 10 mm. Credit: Gretchen B. North, Occidental College, Los Angeles

Encountering these extreme temperatures, plants must utilize creative methods to not only survive but thrive under these difficult and potentially lethal conditions.

This new work by Dr. Gretchen North and colleagues, published in the December issue of American Journal of Botany (http://www.amjbot.org/cgi/reprint/ajb.1000286v1), sheds light on how one desert resident, the cactus Ariocarpus fissuratus, copes with the effects of high temperatures.

"One crucial point is that small desert plants such as the 'living rock' cactus occupy one of the hottest habitats on earth, the surface of desert soils" stated North.

Ariocarpus fissuratus earned its nickname "living rock" because it blends into the rocky surroundings with its small stature that is level with the soil's surface. The researchers hypothesized that the cactus could "escape" high temperatures by moving more of itself below the soil surface where it is cooler.

Measuring changes in plant depth and root anatomy, North and co-workers determined that the cactus moves deeper into the soil by contracting its roots. But does root contraction play a protective role by modulating temperatures?

To find out, the researchers mimicked summer desert conditions by growing plants on a rooftop in Los Angeles, where air temperature was above 99°F for several days. All the cacti were grown in sandy soil, but half had rocks covering the surface of the soil, similar to their native habitats. For plants grown in rocky soils, the internal temperature of the stem was about 39°F lower than those grown in sandy soils alone. While this may seem like a small decrease, it had a significant effect on the health of the plants.

Unlike the cacti grown in sandy soil which all died, those grown in rocky soil survived the intense heat. Root contraction aided in lowering the internal stem temperature, but only when combined with the cooling effects of the rocky surface. The opposite was true in sandy soil where cacti planted higher above the surface had slightly lower stem temperatures than those planted close to the surface.

"Even in rocky soil, experimental plants attained nearly lethal temperatures during a summer heat wave in Los Angeles" said North. "Thus, root contraction and rocky microhabitats may not provide enough protection should desert temperatures get much higher due to global warming.

CITATION: Tadao Y. Garrett, Cam-Van Huynh, and Gretchen B. North (2010). Root contraction helps protect the "living rock" cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. American Journal of Botany 97(12): 1951-1960. DOI: 10.3732/ajb.1000286

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/cgi/reprint/ajb.1000286v1. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>