Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can cacti 'escape' underground in high temperatures?

25.11.2010
How a certain species will potentially handle global warming

In the scorching summer heat of the Chihuahuan Desert in southwest Texas, air temperatures can hover around 97°F (36°C) while at the surface of the soil temperatures can exceed 158°F (70°C).


A \"living rock\" cactus (Ariocarpus fissuratus) in a large container on the roof of the biology building of Occidental College, Los Angeles, in June 2008 after 8 days of high temperatures. This particular plants was embedded in sandy soil with surface rocks. Scale bar = 10 mm. Credit: Gretchen B. North, Occidental College, Los Angeles

Encountering these extreme temperatures, plants must utilize creative methods to not only survive but thrive under these difficult and potentially lethal conditions.

This new work by Dr. Gretchen North and colleagues, published in the December issue of American Journal of Botany (http://www.amjbot.org/cgi/reprint/ajb.1000286v1), sheds light on how one desert resident, the cactus Ariocarpus fissuratus, copes with the effects of high temperatures.

"One crucial point is that small desert plants such as the 'living rock' cactus occupy one of the hottest habitats on earth, the surface of desert soils" stated North.

Ariocarpus fissuratus earned its nickname "living rock" because it blends into the rocky surroundings with its small stature that is level with the soil's surface. The researchers hypothesized that the cactus could "escape" high temperatures by moving more of itself below the soil surface where it is cooler.

Measuring changes in plant depth and root anatomy, North and co-workers determined that the cactus moves deeper into the soil by contracting its roots. But does root contraction play a protective role by modulating temperatures?

To find out, the researchers mimicked summer desert conditions by growing plants on a rooftop in Los Angeles, where air temperature was above 99°F for several days. All the cacti were grown in sandy soil, but half had rocks covering the surface of the soil, similar to their native habitats. For plants grown in rocky soils, the internal temperature of the stem was about 39°F lower than those grown in sandy soils alone. While this may seem like a small decrease, it had a significant effect on the health of the plants.

Unlike the cacti grown in sandy soil which all died, those grown in rocky soil survived the intense heat. Root contraction aided in lowering the internal stem temperature, but only when combined with the cooling effects of the rocky surface. The opposite was true in sandy soil where cacti planted higher above the surface had slightly lower stem temperatures than those planted close to the surface.

"Even in rocky soil, experimental plants attained nearly lethal temperatures during a summer heat wave in Los Angeles" said North. "Thus, root contraction and rocky microhabitats may not provide enough protection should desert temperatures get much higher due to global warming.

CITATION: Tadao Y. Garrett, Cam-Van Huynh, and Gretchen B. North (2010). Root contraction helps protect the "living rock" cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. American Journal of Botany 97(12): 1951-1960. DOI: 10.3732/ajb.1000286

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/cgi/reprint/ajb.1000286v1. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>