Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly molecule may aid quest for nuclear clean-up technology

13.03.2012
Scientists have produced a previously unseen uranium molecule, in a development that could help improve clean-up processes for nuclear waste.

The distinctive butterfly-shaped compound is similar to radioactive molecules that scientists had proposed to be key components of nuclear waste, but were thought too unstable to exist for long.

Researchers have shown the compound to be robust, which implies that molecules with a similar structure may be present in radioactive waste.

Scientists at the University of Edinburgh, who carried out the study, say this suggests the molecule may play a role in forming clusters of radioactive material in waste that are difficult to separate during clean-up.

Improving treatment processes for nuclear waste, including targeting this type of molecule, could help the nuclear industry move towards cleaner power generation, in which all the radioactive materials from spent fuel can be recovered and made safe or used again. This would reduce the amount of waste and curb risks to the environment.

The Edinburgh team worked in collaboration with scientists in the US and Canada to verify the structure of the uranium compound. They made the molecule by reacting a common uranium compound with a nitrogen and carbon-based material. Scientists used chemical and mathematical analyses to confirm the structure of the molecule's distinctive butterfly shape.

The study, funded by the Engineering and Physical Sciences Research Council, the EaStCHEM partnership and the University of Edinburgh, was published in Nature Chemistry.

Professor Polly Arnold of the University of Edinburgh's School of Chemistry, who took part in the research, said: "We have made a molecule that, in theory, should not exist, because its bridge-shaped structure suggests it would quickly react with other chemicals. This discovery that this particular form of uranium is so stable could help optimise processes to recycle valuable radioactive materials and so help manage the UK's nuclear legacy."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>