Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly 'eyespots' add detail to the story of evolution

28.05.2014

A new study of the colorful "eyespots" on the wings of some butterfly species is helping to address fundamental questions about evolution that are conceptually similar to the quandary Aristotle wrestled with about 330 B.C. – "which came first, the chicken or the egg?"

After consideration, Aristotle decided that both the egg and the chicken had always existed. That was not the right answer. The new Oregon State University research is providing a little more detail.


The eyespots on this squinting bush brown butterfly are helping researchers answer questions about fundamental evolution.

Credit: Photo by William Piel


When wings are closed, these eyespots serve as camouflage for a painted lady butterfly.

Credit: Photo by Jeffrey Oliver

The study, published today in Proceedings of the Royal Society B, actually attempts to explain the existence of what scientists call "serial homologues," or patterns in nature that are repetitive, serve a function and are so important they are often retained through millions of years and across vast numbers of species.

Repeated vertebra that form a spinal column, rows of teeth, and groups of eyespots on butterfly wings are all examples of serial homologues. Researchers have tracked the similarities and changes of these serial features through much time and many species, but it's remained a question about how they originally evolved.

... more about:
»attack »butterfly »chicken »eggs »function »individual »species »spinal

Put another way, it's easier to see how one breed of chicken evolved into a different breed of chicken, rather than where chickens – or their eggs - came from to begin with.

Butterfly wings are helping to answer that question. These eyespots, common to the butterfly family Nymphalidae, now serve many butterflies in dual roles of both predator avoidance and mate identification. One theory of their origin is that they evolved from simpler, single spots; another theory is that they evolved from a "band" of color which later separated into spots.

"What we basically conclude is that neither of the existing theories about butterfly eyespots is correct," said Jeffrey Oliver, a postdoctoral scholar in the Department of Integrative Biology of the OSU College of Science. "The evidence suggests that a few eyespots evolved as a group at about the same time, but behaved somewhat as individual entities."

Having appeared as a result of some genetic mutation, however, the eyespots then had the capability to move, acquire a function that had evolutionary value, and because of that value were retained by future generations of butterflies. And at all times, they retained the biological capacity for positional awareness – the eyespots formed in the same place until a new mutation came along.

"At first, it appears the eyespots helped this group of butterflies with one of the most basic aspects of survival value, which is avoiding predators," Oliver said.

On the side of the wing that predators saw when the wings were closed, the eyespots could have served as camouflage from a distance, and up close almost a "bulls-eye" for a predator to see and attack. But this directed the attack toward the tips of less-important wings, and not the more vulnerable head or body of the insect.

But just as important, Oliver said, the study indicates how through continued mutation these eyespots moved to a completely different place – the other side of the wing. There, they performed a completely different function – helping the butterfly to attract and be identified by optimal mates.

"If you take this same concept and apply it to other important features like vertebra and a spinal column, it suggests that some small number of bones would form through mutation, and eventually move, join and be perpetuated as they acquired a function with survival value," Oliver said.

"There would be a biological position in which they were supposed to form, and that would be retained," he said. "And over time, the vertebra might expand in number, and acquire other functions that had nothing to do with their original function, but which still had value."

The evolution of life has never been simple, as Aristotle and the other early philosophers found out. But one bone or butterfly eyespot at a time, the pieces continue to come together.

###

Editor's Note: Digital images of butterflies are available to illustrate this story.

Squinting bush brown, showing "eyespots": http://bit.ly/1jYtyKz

Painted lady: http://bit.ly/1hvwqJp

Jeffrey Oliver | Eurek Alert!

Further reports about: attack butterfly chicken eggs function individual species spinal

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>