Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterflies Reeling From Impacts of Climate and Development

12.01.2010
California butterflies are reeling from a one-two punch of climate change and land development, says an unprecedented analysis led by UC Davis butterfly expert Arthur Shapiro.

The new analysis, scheduled to be published online this week in the journal Proceedings of the National Academy of Sciences, gives insights on how a major and much-studied group of organisms is reacting to the Earth's warming climate.

"Butterflies are not only charismatic to the public, but also widely used as indicators of the health of the environment worldwide," said Shapiro, a professor of evolution and ecology. "We found many lowland species are being hit hard by the combination of warmer temperatures and habitat loss."

The results are drawn from Shapiro's 35-year database of butterfly observations made twice monthly at 10 sites in north-central California from sea level to tree line. The Shapiro butterfly database is unique in science for its combination of attributes: one observer (which reduces errors), very long-term, multiple sites surveyed often, a large number of species (more than 150), and attendant climatological data.

Shapiro's co-authors include three other UC Davis researchers and two former Shapiro graduate students, including lead analyst Matthew Forister, now an assistant professor of biology at the University of Nevada, Reno.

Their most significant findings:

Butterfly diversity (the number of different species present) is falling fast at all the sites near sea level. It is declining more slowly or holding roughly constant in the mountains, except at tree line.
At tree line, butterfly diversity is actually going up, as lower-elevation species react to the warming climate by moving upslope to higher, cooler elevations.
Diversity among high-elevation butterflies is beginning to fall as temperatures become uncomfortably warm for them and, Shapiro says, "There is nowhere to go except heaven."

Using a battery of statistical approaches, Shapiro and his colleagues concluded that climate change alone cannot account in full for the deteriorating low-elevation numbers. Land-use data show that the butterfly losses have been greatest where habitat has been converted from rural to urban and suburban types.

He added that one of the most surprising findings was that ruderal (“weedy”) butterfly species that breed on “weedy” plants in disturbed habitats and are highly mobile are actually declining faster than “non-weedy” species -- those that specialize in one habitat type.

This is especially true in the mountains, where such species do not persist over winter but must recolonize every year from lower altitudes. As their numbers drop in the valleys, fewer are available to disperse uphill, and the rate of colonization drops.

“Butterfly folks generally consider these ruderal species to be ‘junk species,’ sort of the way bird watchers think of pigeons and starlings,” said Shapiro. “So it came as a shock to discover that they were being hit even harder than the species that conservationists are used to thinking about.

"Some of the 'weedy' species have been touted as great success stories, in which native butterflies had successfully adapted to the changed conditions created by European colonization of California. That was the case for many decades, but habitat loss has apparently caught up with them now.”

The study, "Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity," will be online at http://www.pnas.org. It was funded by the National Science Foundation.

Additional authors are: at UC Davis, research scientist James Thorne in the Department of Environmental Science and Policy, and graduate students Joshua O’Brien in the Graduate Group in Ecology and David Waetjen in the Geography Graduate Group; at Denison University in Ohio, assistant professor Andrew McCall; and at the University of Tennessee at Knoxville, assistant professor Nathan Sanders and associate professor James Fordyce (another former Shapiro student).

The Shapiro database is online at http://butterfly.ucdavis.edu. It includes butterfly observations and study site maps, together with climate data from nearby weather stations, descriptions of study sites and habitats, and numerous photos. The 10 survey sites lie along Interstate 80 and range from low-lying Suisun Marsh on San Francisco Bay to 9,103-foot-high Castle Peak near Donner Summit.

The database was made public in 2007, also with funding from the National Science Foundation (news release, http://www-news.ucdavis.edu/search/news_detail.lasso?id=8068).

About UC Davis
For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 32,000 students, an annual research budget that exceeds $600 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools -- Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Arthur Shapiro, Evolution and Ecology, (530) 752-2176, amshapiro@ucdavis.edu
Sylvia Wright, UC Davis News Service, (530) 752-7704, swright@ucdavis.edu

Arthur Shapiro | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>