Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM Study Shows Role of Cellular Protein in Regulation of Binge Eating

21.06.2012
Researchers from Boston University School of Medicine (BUSM) have demonstrated in experimental models that blocking the Sigma-1 receptor, a cellular protein, reduced binge eating and caused binge eaters to eat more slowly.

The research, which is published online in Neuropsychopharmacology, was led by Pietro Cottone, PhD, and Valentina Sabino, PhD, both assistant professors in the pharmacology and psychiatry departments at BUSM.

Binge eating disorder, which affects approximately 15 million Americans, is believed to be the eating disorder that most closely resembles substance dependence. In binge eating subjects, normal regulatory mechanisms that control hunger do not function properly. Binge eaters typically gorge on “junk” foods excessively and compulsively despite knowing the adverse consequences, which are physical, emotional and social in nature. In addition, binge eaters typically experience distress and withdrawal when they abstain from junk food.

The researchers developed an experimental model of compulsive binge eating by providing a sugary, chocolate diet only for one hour a day while the control group was given a standard laboratory diet. Within two weeks, the group exposed to the sugary diet exhibited binge eating behavior and ate four times as much as the controls. In addition, the experimental binge eaters exhibited compulsive behavior by putting themselves in a potentially risky situation in order to get to the sugary food while the control group avoided the risk.

The researchers then tested whether a drug that blocks the Sigma-1 receptor could reduce binge eating of the sugary diet. The experimental data showed the drug successfully reduced binge eating by 40 percent, caused the binge eaters to eat more slowly and blocked the risky behavior.

The abnormal, risky behavior exhibited by the binge eating experimental group suggested to the researchers that there could be something wrong with how decisions were made. Because evaluation of risks and decision making are functions executed in the prefronto-cortical regions of the brain, the researchers tested whether the abundance of Sigma-1 receptors in those regions was abnormal in the binge eaters. They found that Sigma-1 receptor expression was unusually high in those areas, which could explain why blocking its function could decrease both compulsive binge eating and risky behavior.

“These findings suggest that the Sigma-1 receptor may contribute to the neurobiological adaptations that cause compulsive-like eating, opening up a new potential therapeutic treatment target for binge eating disorder,” said Cottone, who also co-directs the Laboratory of Addictive Disorders at BUSM with Sabino.

This research was funded by the National Institute on Drug Abuse under award numbers 5R00DA023680-05 and 5R01DA030425-02; the National Institute of Mental Health under award numbers 1R01MH093650-01A1 and 5R01MH091945-03; the National Institute on Alcohol Abuse and Alcoholism under award number 5R00AA016731-05; and the Boston University Peter Paul Career Development Professorship and Boston University Undergraduate Research Opportunities Program. The study’s other co-authors include Xiaofan Wang, MD, PhD; Jin Won Park, MA; Marta Valenza, MS; Angelo Blasio, PhD; Jina Kwak; Malliga R. Iyer, PhD; Luca Steardo, MD; Kenner C. Rice, PhD; and Teruo Hayashi, MD, PhD.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>