Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify key regulator of inflammatory response

13.04.2012
Researchers at Boston University School of Medicine (BUSM) have identified a gene that plays a key role in regulating inflammatory response and homeostasis. These findings could help lead to the development of innovative methods to reduce the inflammation associated with cancer, type 2 diabetes and other diseases.

The study, which was led by Valentina Perissi, PhD, assistant professor of biochemistry at BUSM, was done in collaboration with the Howard Hughes Medical Institute (HHMI) at the University of California, San Diego. The results are published online and will be in the April 13 print issue of Molecular Cell.

Cells respond to inflammation by producing cytokines, which are cellular signaling protein molecules that allow for intercellular communication. Cytokines, such as TNF-alpha for example, bind to specific receptors on cellular membranes, activating an intracellular signaling process.

In this study, researchers looked at a gene called GPS2, which was previously known to regulate gene expression in the nucleus. This study found that GPS2 plays a critical role at the cellular membrane level to negatively regulate the signaling cascade activated by TNF-alpha. As a result, they observed that increasing GPS2 levels was sufficient to impair the response to TNF-alpha, resulting in a decreased inflammatory response.

Given this information, the researchers then examined whether having more GPS2 in fat tissue would help reduce the development of insulin resistance in conjunction with obesity. The results were promising as insulin signaling in the fat tissue was greatly improved. However, overexpression of GPS2 in the nucleus also had a negative effect on liver function.

"Our study demonstrates that GPS2 plays an important regulatory function in mitigating inflammation," said Perissi, who served as the study's senior author. "These findings have uncovered a potential new target for therapeutic treatments against diseases such as type 2 diabetes and metabolic syndrome, but more research needs to be done to better understand how GPS2 is regulated and whether we can specifically target its anti-inflammatory role."

Funding for this study was provided by HHMI, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the Susan G. Komen Foundation.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>