Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify key regulator of inflammatory response

13.04.2012
Researchers at Boston University School of Medicine (BUSM) have identified a gene that plays a key role in regulating inflammatory response and homeostasis. These findings could help lead to the development of innovative methods to reduce the inflammation associated with cancer, type 2 diabetes and other diseases.

The study, which was led by Valentina Perissi, PhD, assistant professor of biochemistry at BUSM, was done in collaboration with the Howard Hughes Medical Institute (HHMI) at the University of California, San Diego. The results are published online and will be in the April 13 print issue of Molecular Cell.

Cells respond to inflammation by producing cytokines, which are cellular signaling protein molecules that allow for intercellular communication. Cytokines, such as TNF-alpha for example, bind to specific receptors on cellular membranes, activating an intracellular signaling process.

In this study, researchers looked at a gene called GPS2, which was previously known to regulate gene expression in the nucleus. This study found that GPS2 plays a critical role at the cellular membrane level to negatively regulate the signaling cascade activated by TNF-alpha. As a result, they observed that increasing GPS2 levels was sufficient to impair the response to TNF-alpha, resulting in a decreased inflammatory response.

Given this information, the researchers then examined whether having more GPS2 in fat tissue would help reduce the development of insulin resistance in conjunction with obesity. The results were promising as insulin signaling in the fat tissue was greatly improved. However, overexpression of GPS2 in the nucleus also had a negative effect on liver function.

"Our study demonstrates that GPS2 plays an important regulatory function in mitigating inflammation," said Perissi, who served as the study's senior author. "These findings have uncovered a potential new target for therapeutic treatments against diseases such as type 2 diabetes and metabolic syndrome, but more research needs to be done to better understand how GPS2 is regulated and whether we can specifically target its anti-inflammatory role."

Funding for this study was provided by HHMI, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the Susan G. Komen Foundation.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>